858 research outputs found

    A Special Case Of A Conjecture By Widom With Implications To Fermionic Entanglement Entropy

    Full text link
    We prove a special case of a conjecture in asymptotic analysis by Harold Widom. More precisely, we establish the leading and next-to-leading term of a semi-classical expansion of the trace of the square of certain integral operators on the Hilbert space L2(Rd)L^2(\R^d). As already observed by Gioev and Klich, this implies that the bi-partite entanglement entropy of the free Fermi gas in its ground state grows at least as fast as the surface area of the spatially bounded part times a logarithmic enhancement.Comment: 20 pages, 3 figures, improvement of the presentation, some references added or updated, proof of Theorem 12 (formerly Lemma 11) adde

    Gravity and Matter in Causal Set Theory

    Full text link
    The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations, and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density L(f;x)L(f;x) for a set of fields ff is recast into a quasilocal expression L0(f;p,q)L_0(f;p,q) that depends on pairs of causally related points pqp \prec q and is a function of the values of ff in the Alexandrov set defined by those points, and whose limit as pp and qq approach a common point xx is L(f;x)L(f;x). We then describe how to discretize L0(f;p,q)L_0(f;p,q), and use it to define a discrete action.Comment: 13 pages, no figures; In version 2, friendlier results than in version 1 are obtained following much shorter derivation

    A Lorentzian Gromov-Hausdoff notion of distance

    Full text link
    This paper is the first of three in which I study the moduli space of isometry classes of (compact) globally hyperbolic spacetimes (with boundary). I introduce a notion of Gromov-Hausdorff distance which makes this moduli space into a metric space. Further properties of this metric space are studied in the next papers. The importance of the work can be situated in fields such as cosmology, quantum gravity and - for the mathematicians - global Lorentzian geometry.Comment: 20 pages, 0 figures, submitted to Classical and quantum gravity, seriously improved presentatio

    Numerical determination of entanglement entropy for a sphere

    Full text link
    We apply Srednicki's regularization to extract the logarithmic term in the entanglement entropy produced by tracing out a real, massless, scalar field inside a three dimensional sphere in 3+1 flat spacetime. We find numerically that the coefficient of the logarithm is -1/90 to 0.2 percent accuracy, in agreement with an existing analytical result

    Discreteness without symmetry breaking: a theorem

    Get PDF
    This paper concerns sprinklings into Minkowski space (Poisson processes). It proves that there exists no equivariant measurable map from sprinklings to spacetime directions (even locally). Therefore, if a discrete structure is associated to a sprinkling in an intrinsic manner, then the structure will not pick out a preferred frame, locally or globally. This implies that the discreteness of a sprinkled causal set will not give rise to ``Lorentz breaking'' effects like modified dispersion relations. Another consequence is that there is no way to associate a finite-valency graph to a sprinkling consistently with Lorentz invariance.Comment: 7 pages, laTe

    The moduli space of isometry classes of globally hyperbolic spacetimes

    Get PDF
    This is the last article in a series of three initiated by the second author. We elaborate on the concepts and theorems constructed in the previous articles. In particular, we prove that the GH and the GGH uniformities previously introduced on the moduli space of isometry classes of globally hyperbolic spacetimes are different, but the Cauchy sequences which give rise to well-defined limit spaces coincide. We then examine properties of the strong metric introduced earlier on each spacetime, and answer some questions concerning causality of limit spaces. Progress is made towards a general definition of causality, and it is proven that the GGH limit of a Cauchy sequence of Cα±\mathcal{C}^{\pm}_{\alpha}, path metric Lorentz spaces is again a Cα±\mathcal{C}^{\pm}_{\alpha}, path metric Lorentz space. Finally, we give a necessary and sufficient condition, similar to the one of Gromov for the Riemannian case, for a class of Lorentz spaces to be precompact.Comment: 29 pages, 9 figures, submitted to Class. Quant. Gra

    Thermodynamics and area in Minkowski space: Heat capacity of entanglement

    Full text link
    Tracing over the degrees of freedom inside (or outside) a sub-volume V of Minkowski space in a given quantum state |psi>, results in a statistical ensemble described by a density matrix rho. This enables one to relate quantum fluctuations in V when in the state |psi>, to statistical fluctuations in the ensemble described by rho. These fluctuations scale linearly with the surface area of V. If V is half of space, then rho is the density matrix of a canonical ensemble in Rindler space. This enables us to `derive' area scaling of thermodynamic quantities in Rindler space from area scaling of quantum fluctuations in half of Minkowski space. When considering shapes other than half of Minkowski space, even though area scaling persists, rho does not have an interpretation as a density matrix of a canonical ensemble in a curved, or geometrically non-trivial, background.Comment: 17 page

    Implications of area scaling of quantum fluctuations

    Full text link
    Quantum fluctuations of a certain class of bulk operators defined in spatial sub-volumes of Minkowski space-time, have an unexpected area scaling property. We wish to present evidence that such area scaling may be ascribed to a boundary theory. We first highlight the implications of area scaling with two examples in which the boundary area of the spatial regions is not monotonous with their volume. Next, we prove that the covariance of two operators that are restricted to two different regions in Minkowski space scales linearly with their mutual boundary area. Finally, we present an example which demonstrates why this implies an underlying boundary theory.Comment: 12 pages, 5 figure

    Relationships between various characterisations of wave tails

    Full text link
    One can define several properties of wave equations that correspond to the absence of tails in their solutions, the most common one by far being Huygens' principle. Not all of these definitions are equivalent, although they are sometimes assumed to be. We analyse this issue in detail for linear scalar waves, establishing some relationships between the various properties. Huygens' principle is almost always equivalent to the characteristic propagation property, and in two spacetime dimensions the latter is equivalent to the zeroth order progressing wave propagation property. Higher order progressing waves in general do have tails, and do not seem to admit a simple physical characterisation, but they are nevertheless useful because of their close association with exactly solvable two-dimensional equations.Comment: Plain TeX, 26 page

    A numerical study of the correspondence between paths in a causal set and geodesics in the continuum

    Full text link
    This paper presents the results of a computational study related to the path-geodesic correspondence in causal sets. For intervals in flat spacetimes, and in selected curved spacetimes, we present evidence that the longest maximal chains (the longest paths) in the corresponding causal set intervals statistically approach the geodesic for that interval in the appropriate continuum limit.Comment: To the celebration of the 60th birthday of Rafael D. Sorki
    corecore