122 research outputs found

    Arterial pressure changes monitoring with a new precordial noninvasive sensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been validated. A further application is the assessment of Second Heart Sound (S2) amplitude variations at increasing heart rates. The aim of this study was to assess the relationship between second heart sound amplitude variations at increasing heart rates and hemodynamic changes.</p> <p>Methods</p> <p>The transcutaneous force sensor was positioned in the precordial region in 146 consecutive patients referred for exercise (n = 99), dipyridamole (n = 41), or pacing stress (n = 6). The curve of S2 peak amplitude variation as a function of heart rate was computed as the increment with respect to the resting value.</p> <p>Results</p> <p>A consistent S2 signal was obtained in all patients. Baseline S2 was 7.2 ± 3.3 m<it>g</it>, increasing to 12.7 ± 7.7 m<it>g </it>at peak stress. S2 percentage increase was + 133 ± 104% in the 99 exercise, + 2 ± 22% in the 41 dipyridamole, and + 31 ± 27% in the 6 pacing patients (p < 0.05). Significant determinants of S2 amplitude were blood pressure, heart rate, and cardiac index with best correlation (R = .57) for mean pressure.</p> <p>Conclusion</p> <p>S2 recording quantitatively documents systemic pressure changes.</p

    Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New sensors for intelligent remote monitoring of the heart should be developed. Recently, a cutaneous force-frequency relation recording system has been validated based on heart sound amplitude and timing variations at increasing heart rates.</p> <p>Aim</p> <p>To assess sensor-based post-exercise contractility, diastolic function and pressure in normal and diseased hearts as a model of a wireless telemedicine system.</p> <p>Methods</p> <p>We enrolled 150 patients and 22 controls referred for exercise-stress echocardiography, age 55 ± 18 years. The sensor was attached in the precordial region by an ECG electrode. Stress and recovery contractility were derived by first heart sound amplitude vibration changes; diastolic times were acquired continuously. Systemic pressure changes were quantitatively documented by second heart sound recording.</p> <p>Results</p> <p>Interpretable sensor recordings were obtained in all patients (feasibility = 100%). Post-exercise contractility overshoot (defined as increase > 10% of recovery contractility vs exercise value) was more frequent in patients than controls (27% vs 8%, p < 0.05). At 100 bpm stress heart rate, systolic/diastolic time ratio (normal, < 1) was > 1 in 20 patients and in none of the controls (p < 0.01); at recovery systolic/diastolic ratio was > 1 in only 3 patients (p < 0.01 vs stress). Post-exercise reduced arterial pressure was sensed.</p> <p>Conclusion</p> <p>Post-exercise contractility, diastolic time and pressure changes can be continuously measured by a cutaneous sensor. Heart disease affects not only exercise systolic performance, but also post-exercise recovery, diastolic time intervals and blood pressure changes – in our study, all of these were monitored by a non-invasive wearable sensor.</p

    Second-opinion stress tele-echocardiography for the Adonhers (Aged donor heart rescue by stress echo) project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To resolve the current shortage of donor hearts, we established the Adonhers protocol. An upward shift of the donor age cut-off limit (from the present 55 to 65 years) is acceptable if a stress echo screening on the candidate donor heart is normal. This study aimed to verify feasibility of a "second opinion" of digitally transferred images of stress echo results to minimize technical variability in selection of aged donor hearts for heart transplant.</p> <p>Methods</p> <p>The informatics infrastructure was created for a core lab reading with a second opinion from the Pisa stress echo lab. To test the system, simulation standard stress echo cineloops were sent digitally from 5 peripheral labs to the central core lab.</p> <p>Starting January 2009, real marginal donor stress echos were sent via internet to the central core echo lab, Pisa, for a second opinion before heart transplant.</p> <p>Results</p> <p>In the simulation protocol, 30 dipyridamole stress echocardiograms were sent from the five peripheral echo labs to the central core lab in Pisa. Both the echo images and reports were correctly uploaded in the web system and sent to the core echo lab; the second opinion evaluation was obtained in all cases (100% feasibility). In the transplant protocol, eight donor cases were sent to the Pisa core lab for the second opinion protocol, and six of them were transplanted in marginal recipients.</p> <p>Conclusions</p> <p>Second-Opinion Stress Tele-Echocardiography can effectively be performed in a network aimed to safely expand the heart donor pool for heart transplant.</p

    Recruitment of aged donor heart with pharmacological stress echo. A case report

    Get PDF
    BACKGROUND: The heart transplant is a treatment of the heart failure, which is not responding to medications, and its efficiency is already proved: unfortunately, organ donation is a limiting step of this life-saving procedure. To counteract heart donor shortage, we should screen aged potential donor hearts for initial cardiomyopathy and functionally significant coronary artery disease. Donors with a history of cardiac disease are generally excluded. Coronary angiography is recommended for most male donors older than 45 years and female donors older than 50 years to evaluate coronary artery stenoses. A simpler way to screen aged potential donor hearts for initial cardiomyopathy and functionally significant coronary artery disease should be stress echocardiography. CASE REPORT: A marginal donor (A 57 year old woman meeting legal requirements for brain death) underwent a transesophageal (TE) Dipyridamole stress echo (6 minutes accelerated protocol) to rule out moderate or severe heart and coronary artery disease. Wall motion was normal at baseline and at peak stress (WMSI = 1 at baseline and peak stress, without signs of stress inducible ischemia). The pressure/volume ratio was 9.6 mmHg/ml/m(2 )at baseline, increasing to 14 mmHg/ml/m(2 )at peak stress, demonstrating absence of latent myocardial dysfunction. The marginal donor heart was transplanted to a recipient "marginal" for co-morbidity ( a 63 year old man with multiple myeloma and cardiac amyloidosis , chronic severe heart failure, NYHA class IV). Postoperative treatment and early immunosuppressant regimen were performed according to standard protocols. The transplanted heart was assessed normal for dimensions and ventricular function at transthoracic (TT) echocardiography on post-transplant day 7. Coronary artery disease was ruled out at coronary angiography one month after transplant; left ventriculography showed normal global and segmental LV function of the transplanted heart. CONCLUSION: For the first time stress echo was successfully used in the critical theater of screening potential donor hearts. This method is enormously more feasible, less expensive, and more environmentally sustainable than any possible alternative strategy based on stress scintigraphy perfusion imaging or coronary angiography. The selection of hearts "too good to die" on the basis of bedside resting and stress echo can be a critical way to solve the mismatch between donor need and supply

    Flow-volume loops derived from three-dimensional echocardiography: a novel approach to the assessment of left ventricular hemodynamics

    Get PDF
    BACKGROUND: This study explores the feasibility of non-invasive evaluation of left ventricular (LV) flow-volume dynamics using 3-dimensional (3D) echocardiography, and the capacity of such an approach to identify altered LV hemodynamic states caused by valvular abnormalities. METHODS: Thirty-one patients with moderate-severe aortic (AS) and mitral (MS) stenoses (21 and 10 patients, respectively) and 10 healthy volunteers underwent 3D echocardiography with full volume acquisition using Philips Sonos 7500 equipment. The digital 3D data were post- processed using TomTec software. LV flow-volume loops were subsequently constructed for each subject by plotting instantaneous LV volume data sampled throughout the cardiac cycle vs. their first derivative representing LV flow. After correction for body surface area, an average flow-volume loop was calculated for each subject group. RESULTS: Flow-volume loops were obtainable in all subjects, except 3 patients with AS. The flow-volume diagrams displayed clear differences in the form and position of the loops between normal individuals and the respective patient groups. In patients with AS, an "obstructive" pattern was observed, with lower flow values during early systole and larger end-systolic volume. On the other hand, patients with MS displayed a "restrictive" flow-volume pattern, with reduced diastolic filling and smaller end-diastolic volume. CONCLUSION: Non-invasive evaluation of LV flow-volume dynamics using 3D-echocardiographic data is technically possible and the approach has a capacity to identify certain specific types of alteration of LV flow-volume pattern caused by valvular abnormalities, thus reflecting underlying hemodynamic states specific for these abnormalities

    Assessing functional mitral regurgitation with exercise echocardiography: rationale and clinical applications

    Get PDF
    Secondary or functional mitral regurgitation (FMR) represents an increasing feature of mitral valve disease characterized by abnormal function of anatomically normal leaflets in the context of the impaired function of remodelled left ventricles. The anatomic and pathophysiological basis of FMR are briefly analyzed; in addition, the role of exercise echocardiography for the assessment of FMR is discussed in view of its relevance to clinical practice

    Abnormal shortened diastolic time length at increasing heart rates in patients with abnormal exercise-induced increase in pulmonary artery pressure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The degree of pulmonary hypertension is not independently related to the severity of left ventricular systolic dysfunction but is frequently associated with diastolic filling abnormalities. The aim of this study was to assess diastolic times at increasing heart rates in normal and in patients with and without abnormal exercise-induced increase in pulmonary artery pressure (PASP). Methods. We enrolled 109 patients (78 males, age 62 ± 13 years) referred for exercise stress echocardiography and 16 controls. The PASP was derived from the tricuspid Doppler tracing. A cut-off value of PASP ≥ 50 mmHg at peak stress was considered as indicative of abnormal increase in PASP. Diastolic times and the diastolic/systolic time ratio were recorded by a precordial cutaneous force sensor based on a linear accelerometer.</p> <p>Results</p> <p>At baseline, PASP was 30 ± 5 mmHg in patients and 25 ± 4 in controls. At peak stress the PASP was normal in 95 patients (Group 1); 14 patients (Group 2) showed an abnormal increase in PASP (from 35 ± 4 to 62 ± 12 mmHg; P < 0.01). At 100 bpm, an abnormal (< 1) diastolic/systolic time ratio was found in 0/16 (0%) controls, in 12/93 (13%) Group 1 and 7/14 (50%) Group 2 patients (p < 0.05 between groups).</p> <p>Conclusion</p> <p>The first and second heart sound vibrations non-invasively monitored by a force sensor are useful for continuously assessing diastolic time during exercise. Exercise-induced abnormal PASP was associated with reduced diastolic time at heart rates beyond 100 beats per minute.</p
    corecore