138 research outputs found

    Neural mechanisms underlying target detection in a dragonfly centrifugal neuron

    Get PDF
    © The Company of Biologists Ltd 2007Visual identification of targets is an important task for many animals searching for prey or conspecifics. Dragonflies utilize specialized optics in the dorsal acute zone, accompanied by higher-order visual neurons in the lobula complex, and descending neural pathways tuned to the motion of small targets. While recent studies describe the physiology of insect small target motion detector (STMD) neurons, little is known about the mechanisms that underlie their exquisite sensitivity to target motion. Lobula plate tangential cells (LPTCs), a group of neurons in dipteran flies selective for wide-field motion, have been shown to take input from local motion detectors consistent with the classic correlation model developed by Hassenstein and Reichardt in the 1950s. We have tested the hypothesis that similar mechanisms underlie the response of dragonfly STMDs. We show that an anatomically characterized centrifugal STMD neuron (CSTMD1) gives responses that depend strongly on target contrast, a clear prediction of the correlation model. Target stimuli are more complex in spatiotemporal terms than the sinusoidal grating patterns used to study LPTCs, so we used a correlation-based computer model to predict response tuning to velocity and width of moving targets. We show that increasing target width in the direction of travel causes a shift in response tuning to higher velocities, consistent with our model. Finally, we show how the morphology of CSTMD1 allows for impressive spatial interactions when more than one target is present in the visual field.Bart R. H. Geurten, Karin Nordström, Jordanna D. H. Sprayberry, Douglas M. Bolzon and David C. O'Carrol

    Wettability of plasma treated furfurylated solid pine wood.

    Get PDF
    Este estudo objetivou investigar o efeito do tratamento por plasma na molhabilidade da madeira furfurilada de pinus por meio da técnica de ângulo de contato. Amostras de Pinus taeda livres de defeitos foram imersas em pressão atmosférica em duas soluções de álcool furfurílico com o intuito de obter-se dois níveis de ganho percentual de massa, 15 e 40%. A superfície das amostras controle e furfuriladas foi modificada com tratamento por plasma em um reator alimentado por radiofrequência (RF). O tratamento por plasma de argônio foi realizado em baixa pressão com uma potência de 80 W durante 120 s. Os parâmetros de molhabilidade foram mensurados pela técnica não-destrutiva de ângulo de contato, utilizando-se o método de gota séssil. As mensurações foram realizadas após 1, 4, 8, 12 e 20 dias do tratamento por plasma. Determinou-se o ângulo de contato aparente, o trabalho de adesão e a energia livre de superfície. Tanto a molhabilidade da madeira não tratada como a molhabilidade da madeira furfurilada aumentaram após o tratamento por plasma. O ângulo de contato aparente diminuiu e a superfície da madeira de pinus tornou-se mais molhável. O tratamento por plasma converteu a superfície hidrofóbica da madeira furfurilada de pinus em uma superfície hidrofílica. A madeira furfurilada de pinus recuperou parcialmente a sua hidrofobicidade natural ao longo dos dias de exposição. No entanto, mesmo com os efeitos da exposição prolongada, o alto nível de molhabilidade obtido após o tratamento por plasma pode ser um importante fator para futuras aplicações em processos industriais

    Applying colorimetry for wood differentiation of fabaceae species grown in southern brazil

    Get PDF
    Because of the need for identification of forest species, especially for detection of illegal wood trade, the objective of this study was to evaluate the potential of colorimetry for differentiation of Inga vera Willd., Muellera campestris (Mart. ex Benth.) M.J. Silva & A.M.G. Azevedo and Machaerium paraguariense Hassl., species of the Fabaceae family, native to the Araucaria Forest in the state of Santa Catarina, southern Brazil. Discs at breast height were collected from three trees of each species and the colorimetric parameters (L*, a*, b*, C* and h) and visible spectra were evaluated in different radial position of the trunk (near bark, intermediate and near pith) and three different anatomical sections (transversal, radial and tangential surfaces). Mean values of hue angle (h) among the colorimetric parameters resulted in the highest potential for species discrimination. With respect to radial trunk position and anatomical section, parameters a* (green-red) and h were not statistically different, independent of the wood samples evaluated. For other parameters (L*, b* and C*), each species presented distinct results. Principal component analysis with second derivative of visible spectra discriminated all species. Colorimetry associated with chemometrics allowed to distinguish I. vera, M. campestris and M. paraguariense

    Production of activated carbon from fast-pyrolysis biochar.

    Get PDF
    Thermochemical conversion of lignocellulosic biomass via fast-pyrolysis technique has become an interesting alternative to produce valuable bio-based products, such as the bio-oil. This alternative, for instance, can increase even more the profitability of such well-consolidated pulp and paper industries by turning it into more energetically self-sufficient processo Besides bio-oil, the fast-pyrolysis process results in many byproducts with high economic and environmental benefits. Biochar is one of these byproducts, and it can be activated by physical and chemical methods to use for water treatment and for environmental remediation. This study investigates the activation of biochar obtained from the fast-pyrolysis of wood biomass. The biochar was collected from a pilot-plant of bio-oil production and then activated via physical route (C02) at 800°C for 30 and 60 minutes; and via chemical route (H3P04) at 450, 550 and 650°C for 60 minutes. The activated carbon was characterized by product yield, proximate analysis, surface area and thermogravimetric analysis. The chemical routes with H3P04 were more efficient than the physical routes with CO2. The chemical activation at 450°C presented the highest product yield (80.47%) followed by a decrease in the yield to 71-75% with the increase of the temperature. The fixed carbon content increased after both physical and chemical activation, remaining around 91%. On the other hand, the volatile matter decreased significantly, especially in the physical routes. The surface area increased from 17.94 (untreated biochar) to 450-655 m2/g, confirming the improvement of the porosity, mainly in the biochar activated by H3P04 at 450°C and by CO2 for 60 minutes. Ali biochar activated by chemical routes presented similar residual mass at 600°C, whereas the material physically activated with CO2 presented lower residual mass, especially the one treated for 30 minutes. Overall, these results provide an alternative to produce a high added-value material from a fast-pyrolysis byproduct, encouraging the exploration of thermochemical conversion of lignocellulosic biomass

    Deposição de nanosílica na superfície de lâminas de madeira tratadas por plasma a frio.

    Get PDF
    Bilingue. Título em inglês: Deposition of nanosilica on wood veneer surface treated by cold-plasma

    Status of the Super-B factory Design

    Full text link
    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036^{36} cm2^{-2} sec1^{-1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Υ\Upsilon(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low βy\beta_y^\star without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications

    Summary of the BDS and MDI CLIC08 Working Group

    Get PDF
    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis
    corecore