58 research outputs found

    Oxygen Reduction at Carbon Supported Lanthanides:The Role of the B-site

    Get PDF
    The kinetics of the oxygen reduction reaction (ORR) at carbon supported transition metal oxides in alkaline solutions is systematically investigated as a function of the nature of the B-site. The study is focused on LaBO3 (B = Cr, Co, Fe, Mn and Ni) nanoparticles synthesized by an ionic liquid route, offering fine control over phase purity and composition. Activity towards the ORR was compared with commercial Pt/Etek catalyst. Detailed electrochemical analysis employing a rotating ring-disc electrode provides conclusive evidences that the carbon support plays an important contribution in the faradaic responses. Decoupling the contribution of the carbon support uncovers that the reactivity of LaMnO3 towards the 4e- ORR pathway is orders of magnitude higher than for the other lanthanides. We rationalise these observations in terms of changes in the redox state at the B-site close to the formal oxygen reduction potential

    Microfluidic Perfusion for Regulating Diffusible Signaling in Stem Cells

    Get PDF
    Background Autocrine & paracrine signaling are widespread both in vivo and in vitro, and are particularly important in embryonic stem cell (ESC) pluripotency and lineage commitment. Although autocrine signaling via fibroblast growth factor-4 (FGF4) is known to be required in mouse ESC (mESC) neuroectodermal specification, the question of whether FGF4 autocrine signaling is sufficient, or whether other soluble ligands are also involved in fate specification, is unknown. The spatially confined and closed-loop nature of diffusible signaling makes its experimental control challenging; current experimental approaches typically require prior knowledge of the factor/receptor in order to modulate the loop. A new approach explored in this work is to leverage transport phenomena at cellular resolution to downregulate overall diffusible signaling through the physical removal of cell-secreted ligands. Methodology/Principal Findings We develop a multiplex microfluidic platform to continuously remove cell-secreted (autocrine\paracrine) factors to downregulate diffusible signaling. By comparing cell growth and differentiation in side-by-side chambers with or without added cell-secreted factors, we isolate the effects of diffusible signaling from artifacts such as shear, nutrient depletion, and microsystem effects, and find that cell-secreted growth factor(s) are required during neuroectodermal specification. Then we induce FGF4 signaling in minimal chemically defined medium (N2B27) and inhibit FGF signaling in fully supplemented differentiation medium with cell-secreted factors to determine that the non-FGF cell-secreted factors are required to promote growth of differentiating mESCs. Conclusions/Significance Our results demonstrate for the first time that flow can downregulate autocrine\paracrine signaling and examine sufficiency of extracellular factors. We show that autocrine\paracrine signaling drives neuroectodermal commitment of mESCs through both FGF4-dependent and -independent pathways. Overall, by uncovering autocrine\paracrine processes previously hidden in conventional culture systems, our results establish microfluidic perfusion as a technique to study and manipulate diffusible signaling in cell systems.National Institutes of Health (U.S.) (NIH grant No. EB007278)Swiss National Science FoundationSwiss National Science Foundatio

    Untersuchungen zu thermodynamischen und strukturellen Eigenschaften des quasiternÀren Systems Cd 3l In 2-2k-2l Ga 2k Te 3

    Full text link
    Fuer das quasiternaere System Cd(3l)In(2-2k-2l)Ga(2k)Te(3) wurden durch Roentgenstrukur- und Elektronenstrahlmikroanalyse strukturelle und thermodynamische Eigenschaften untersucht. Dabei wurden fuer die Temperaturen 700 K, 800 K, 850 K und 900 K isotherme Schnitte des Zustandsdiagramms bestimmt und exemplarisch an den Verbindungen In2Te3 und CdGa2Te4 zur Untersuchung der Ordnungstendenzen im Kristall Hochtemperaturroentgenmessungen vorgenommen. Abschliessend konnten durch Anpassung thermodynamischer Berechnungen an die experimentellen Ergebnisse der ternaere Wechselwirkungsparameter bestimmt und isotherme Schnitte des Zustandsdiagramms berechnet werden
    • 

    corecore