1,609 research outputs found

    Zener diode function generator requires no external reference voltage

    Get PDF
    Function generator utilizing parallel impedance networks with zener diodes produces functions which are discontinuous in slope. The function generated appears at the output of the parallel network in the form of a voltage varying in time

    Magnetic focusing of charge carriers from spin-split bands: Semiclassics of a Zitterbewegung effect

    Full text link
    We present a theoretical study of the interplay between cyclotron motion and spin splitting of charge carriers in solids. While many of our results apply more generally, we focus especially on discussing the Rashba model describing electrons in the conduction band of asymmetric semiconductor heterostructures. Appropriate semiclassical limits are distinguished that describe various situations of experimental interest. Our analytical fomulae, which take full account of Zeeman splitting, are used to analyse recent magnetic-focusing data. Surprisingly, it turns out that the Rashba effect can dominate the splitting of cyclotron orbits even when the Rashba and Zeeman spin-splitting energies are of the same order. We also find that the origin of spin-dependent cyclotron motion can be traced back to Zitterbewegung-like oscillatory dynamics of charge carriers from spin-split bands. The relation between the two phenomena is discussed, and we estimate the effect of Zitterbewegung-related corrections to the charge carriers' canonical position.Comment: 14 pages, 2 figures, IOP style, v2: minor changes, to appear in NJP Focus Issue on Spintronic

    Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard

    Full text link
    This paper is devoted to the quantum chaology of three-dimensional systems. A trace formula is derived for compact polyhedral billiards which tessellate the three-dimensional hyperbolic space of constant negative curvature. The exact trace formula is compared with Gutzwiller's semiclassical periodic-orbit theory in three dimensions, and applied to a tetrahedral billiard being strongly chaotic. Geometric properties as well as the conjugacy classes of the defining group are discussed. The length spectrum and the quantal level spectrum are numerically computed allowing the evaluation of the trace formula as is demonstrated in the case of the spectral staircase N(E), which in turn is successfully applied in a quantization condition.Comment: 32 pages, compressed with gzip / uuencod

    Spectral Statistics for the Dirac Operator on Graphs

    Full text link
    We determine conditions for the quantisation of graphs using the Dirac operator for both two and four component spinors. According to the Bohigas-Giannoni-Schmit conjecture for such systems with time-reversal symmetry the energy level statistics are expected, in the semiclassical limit, to correspond to those of random matrices from the Gaussian symplectic ensemble. This is confirmed by numerical investigation. The scattering matrix used to formulate the quantisation condition is found to be independent of the type of spinor. We derive an exact trace formula for the spectrum and use this to investigate the form factor in the diagonal approximation

    Level spacings and periodic orbits

    Full text link
    Starting from a semiclassical quantization condition based on the trace formula, we derive a periodic-orbit formula for the distribution of spacings of eigenvalues with k intermediate levels. Numerical tests verify the validity of this representation for the nearest-neighbor level spacing (k=0). In a second part, we present an asymptotic evaluation for large spacings, where consistency with random matrix theory is achieved for large k. We also discuss the relation with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of validity of asymptotic evaluation clarifie

    Determinants of short-period heart rate variability in the general population

    Get PDF
    Decreased heart rate variability (HRV) is associated with a worse prognosis in a variety of diseases and disorders. We evaluated the determinants of short-period HRV in a random sample of 149 middle-aged men and 137 women from the general population. Spectral analysis was used to compute low-frequency (LF), high-frequency (HF) and total-frequency power. HRV showed a strong inverse association with age and heart rate in both sexes with a more pronounced effect of heart rate on HRV in women. Age and heart rate-adjusted LF was significantly higher in men and HF higher in women. Significant negative correlations of BMI, triglycerides, insulin and positive correlations of HDL cholesterol with LF and total power occurred only in men. In multivariate analyses, heart rate and age persisted as prominent independent predictors of HRV. In addition, BMI was strongly negatively associated with LF in men but not in women, We conclude that the more pronounced vagal influence in cardiac regulation in middle-aged women and the gender-different influence of heart rate and metabolic factors on HRV may help to explain the lower susceptibility of women for cardiac arrhythmias. Copyright (C) 2001 S. Karger AG, Basel

    Semiclassical Approach to Chaotic Quantum Transport

    Full text link
    We describe a semiclassical method to calculate universal transport properties of chaotic cavities. While the energy-averaged conductance turns out governed by pairs of entrance-to-exit trajectories, the conductance variance, shot noise and other related quantities require trajectory quadruplets; simple diagrammatic rules allow to find the contributions of these pairs and quadruplets. Both pure symmetry classes and the crossover due to an external magnetic field are considered.Comment: 33 pages, 11 figures (appendices B-D not included in journal version

    Quantum graphs with singular two-particle interactions

    Full text link
    We construct quantum models of two particles on a compact metric graph with singular two-particle interactions. The Hamiltonians are self-adjoint realisations of Laplacians acting on functions defined on pairs of edges in such a way that the interaction is provided by boundary conditions. In order to find such Hamiltonians closed and semi-bounded quadratic forms are constructed, from which the associated self-adjoint operators are extracted. We provide a general characterisation of such operators and, furthermore, produce certain classes of examples. We then consider identical particles and project to the bosonic and fermionic subspaces. Finally, we show that the operators possess purely discrete spectra and that the eigenvalues are distributed following an appropriate Weyl asymptotic law
    • …
    corecore