195 research outputs found

    The use of a non-classical friction law in finite-element analysis of contact problems

    Get PDF
    Bibliography: leaves 82-84.In this thesis a description is given of the numerical treatment of contact problems in elasticity. Frictional effects on the contact surface are modelled by using a nonlocal, nonlinear friction law. Features of the boundary value problem, which merit special attention, are the presence of inequality constraints and the fact that the contact surface is not known a priori. Finite element approximations based on a variational formulation of the problem, developed by Oden and Pires, are used to generate a discretised version. The solution procedure incorporates an iterative algorithm for the determination of the extent of the contact surface. Alternative techniques for the evaluation of the frictional stresses on the contact surface are described and numerical examples are presented

    Measurement based fault tolerant error correcting quantum codes on foliated cluster states

    Get PDF

    A multi-centre analysis of radiotherapy beam output measurement

    Get PDF
    Background and Purpose Radiotherapy requires tight control of the delivered dose. This should include the variation in beam output as this may directly affect treatment outcomes. This work provides results from a multi-centre analysis of routine beam output measurements. Materials and Methods A request for 6MV beam output data was submitted to all radiotherapy centres in the UK, covering the period January 2015 – July 2015. An analysis of the received data was performed, grouping the data by manufacturer, machine age, and recording method to quantify any observed differences. Trends in beam output drift over time were assessed as well as inter-centre variability. Annual trends were calculated by linear extrapolation of the fitted data. Results Data was received from 204 treatment machines across 52 centres. Results were normally distributed with mean of 0.0% (percentage deviation from initial calibration) and a 0.8% standard deviation, with 98.1% of results within ±2%. There were eight centres relying solely on paper records. Annual trends varied greatly between machines with a mean drift of +0.9%/year with 95th percentiles of +5.1%/year and -2.2%/year. For the machines of known age 25% were over ten years old, however there was no significant differences observed with machine age. Conclusions Machine beam output measurements were largely within ±2% of 1.00cGy/MU. Clear trends in measured output over time were seen, with some machines having large drifts which would result in additional burden to maintain within acceptable tolerances. This work may act as a baseline for future comparison of beam output measurements.</p

    Continuous flow mechanochemistry: reactive extrusion as an enabling technology in organic synthesis

    Get PDF
    Rapid and wide-ranging developments have established mechanochemistry as a powerful avenue in sustainable organic synthesis. This is primarily due to unique opportunities which have been offered in solvent-free - or highly solvent-minimised - reaction systems. Nevertheless, despite elegant advances in ball-milling technology, limitations in scale-up still remain. This tutorial review covers the first reports into the translation from "batch-mode" ball-milling to "flow-mode" reactive extrusion, using twin-screw extrusion

    CRISPR-Cas immunity, DNA repair and genome stability

    Get PDF
    © 2018 The Author(s). Co-opting of CRISPR-Cas ‘Interference’ reactions for editing the genomes of eukaryotic and prokaryotic cells has highlighted crucial support roles for DNA repair systems that strive to maintain genome stability. As front-runners in genome editing that targets DNA, the class 2 CRISPR-Cas enzymes Cas9 and Cas12a rely on repair of DNA double-strand breaks (DDSBs) by host DNA repair enzymes, using mechanisms that vary in how well they are understood. Data are emerging about the identities of DNA repair enzymes that support genome editing in human cells. At the same time, it is becoming apparent that CRISPR-Cas systems functioning in their native environment, bacteria or archaea, also need DNA repair enzymes. In this short review, we survey how DNA repair and CRISPR-Cas systems are intertwined. We consider how understanding DNA repair and CRISPR-Cas interference reactions in nature might help improve the efficacy of genome editing procedures that utilise homologous or analogous systems in human and other cells

    Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires

    Full text link
    We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.Comment: Accepted for publication in Spatial Statistic

    Costs of the police service and mental healthcare pathways experienced by individuals with enduring mental health needs

    Get PDF
    Background Substantial policy, communication and operational gaps exist between mental health services and the police for individuals with enduring mental health needs. Aims To map and cost pathways through mental health and police services, and to model the cost impact of implementing key policy recommendations. Method Within a case-linkage study, we estimated 1-year individual-level healthcare and policing costs. Using decision modelling, we then estimated the potential impact on costs of three recommended service enhancements: street triage, Mental Health Act assessments for all Section 136 detainees and outreach custody link workers. Results Under current care, average 1-year mental health and police costs were £10 812 and £4552 per individual respectively (n = 55). The cost per police incident was £522. Models suggested that each service enhancement would alter per incident costs by between −8% and +6%. Conclusions Recommended enhancements to care pathways only marginally increase individual-level costs

    Changes in Head, Withers, and Pelvis Movement Asymmetry in Lame Horses as a Function of Diagnostic Anesthesia Outcome, Surface and Direction

    Get PDF
    Evaluation of diagnostic anesthesia during equine lameness examination requires comparison of com-plex movement patterns and can be influenced by expectation bias. There is limited research about how changes in movement asymmetries after successful analgesia are affected by different exercise condi-tions. Movement asymmetry of head, withers and pelvis was quantified in N = 31 horses undergoing forelimb or hindlimb diagnostic anesthesia. Evaluation on a straight line and a circle was performed with subjective diagnostic anesthesia outcome and quantitative changes recorded. Mixed linear models ( P < .05) analyzed the differences in movement asymmetry before/after diagnostic anesthesia -random fac-tor: horse, fixed factors: surface (soft, hard), direction (straight, inside, outside, inside-outside average), diagnostic anesthesia outcome (negative, partially positive, positive) and two-way interactions. Forelimb diagnostic anesthesia influenced primary movement asymmetry (all head and withers parameters) and compensatory movement asymmetry (two pelvic parameters) either individually ( P <=.009) or in interac-tion with surface ( P <=.03). Hindlimb diagnostic anesthesia influenced primary movement asymmetry (all pelvic parameters) and compensatory movement asymmetry (two head and two withers parameters) ei-ther individually ( P <=.04) or in interaction with surface ( P <=.01;) or direction ( P <=.006). Direction was also significant individually for two pelvic parameters ( P <=.04). Changes in primary movement asymmetries after partially positive or positive outcomes indicated improvement in the blocked limb. Compensatory changes were mostly in agreement with the 'law of sides'. The changes were more pronounced on the hard surface for hindlimb lameness and on the soft surface for forelimb lameness. Withers asymmetry showed distinct patterns for forelimb and hindlimb lameness potentially aiding clinical decision-making.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/
    • …
    corecore