16 research outputs found

    Xpert Ultra testing of blood in severe HIV-associated tuberculosis to detect and measure Mycobacterium tuberculosis blood stream infection: a diagnostic and disease biomarker cohort study

    Get PDF
    BACKGROUND: Mycobacterium tuberculosis bloodstream infection is a leading cause of death in people living with HIV and disseminated bacillary load might be a key driver of disease severity. We aimed to assess Xpert MTB/RIF Ultra (Xpert Ultra) testing of blood as a diagnostic for M tuberculosis bloodstream infection and investigate cycle threshold as a quantitative disease biomarker. METHODS: In this cohort study, we obtained biobanked blood samples from a large and well characterised cohort of adult patients admitted to hospital in Western Cape, South Africa with suspected HIV-associated tuberculosis and a CD4 count less than 350 cells per μL. Patients already receiving antituberculosis therapy were excluded. Samples were obtained on recruitment within 72 h of admission to hospital, and patients were followed up for 12 weeks to determine survival. We tested the biobanked blood samples using the Xpert Ultra platform after lysis and wash processing of the blood. We assessed diagnostic yield (proportion of cases detected, with unavailable test results coded as negative) against a microbiological reference, both as a function of markers of critical-illness and compared with other rapid diagnostics (urine lipoarabinomannan and sputum Xpert). Quantitative blood Xpert Ultra results were evaluated as a disease biomarker by assessing association with disease phenotype defined by principal component analysis of 32 host-response markers. Prognostic value compared to other tuberculosis biomarkers was assessed using likelihood ratio testing of nested models predicting 12-week mortality. FINDINGS: Between Jan 16, 2014, and Oct 19, 2016, of the 659 participants recruited to the parent study, 582 had an available biobanked blood sample. 447 (77%) of 582 met the microbiological reference standard for tuberculosis diagnosis. Median CD4 count was 62 (IQR 221-33) cells per μL, and 123 (21%) of participants died by 12-weeks follow-up. Blood Xpert Ultra was positive in 165 (37%) of 447 participants with confirmed tuberculosis by the microbiological reference standard, with a diagnostic yield of 0·37 (95% CI 0·32-0·42). Diagnostic yield increased with lower CD4 count or haemoglobin, and outperformed urine lipoarabinomannan testing in participants with elevated venous lactate. Quantitative blood Xpert Ultra results were more closely associated with mortality than other tuberculosis biomarkers including blood culture, and urine lipoarabinomannan, or urine Xpert (all p<0·05). A principal component of clinical phenotype capturing markers of inflammation, tissue damage, and organ dysfunction was strongly associated with both blood Xpert-Ultra positivity (associated with a SD increase of 1·1 in PC score, p<0·0001) and cycle threshold (r= -0·5; p<0·0001). INTERPRETATION: Xpert Ultra testing of pre-processed blood could be used as a rapid diagnostic test in critically ill patients with suspected HIV-associated tuberculosis, while also giving additional prognostic information compared with other available markers. A dose-response relationship between quantitative blood Xpert Ultra results, host-response phenotype, and mortality risk adds to evidence that suggests M tuberculosis bloodstream infection bacillary load is causally related to outcomes. FUNDING: Wellcome Trust, National Institute of Health Fogarty International Center, South African MRC, UK National Institute of Health Research, National Research Foundation of South Africa. TRANSLATIONS: For the Xhosa and Afrikaans translations of the abstract see Supplementary Materials section

    Assessing the clinical severity of the Omicron variant in the Western Cape Province, South Africa, using the diagnostic PCR proxy marker of RdRp target delay to distinguish between Omicron and Delta infections - a survival analysis

    Get PDF
    BACKGROUND: The extent to which the reduced risk of severe disease seen with SARS-CoV-2 Omicron is due to a decrease in variant virulence, or higher levels of population immunity, is currently not clear. METHODS: RdRp target delay (RTD) in the Seegene AllplexTM 2019-nCoV PCR assay is a proxy marker for the Delta variant. The absence of this proxy marker in the transition period was used to identify suspected Omicron infections. Cox regression was performed for the outcome of hospital admission in those who tested positive for SARS-CoV-2 on the Seegene AllplexTM assay from 1 November to 14 December 2021 in the Western Cape Province, South Africa, public sector. Vaccination status and prior diagnosed infection, were adjusted for. RESULTS: 150 cases with RTD and 1486 cases without RTD were included. Cases without RTD had a lower hazard of admission (adjusted Hazard Ratio [aHR] of 0.56, 95%CI 0.34-0.91). Complete vaccination was protective of admission with an aHR of 0.45 (95%CI 0.26-0.77). CONCLUSION: Omicron has resulted in a lower risk of hospital admission, compared to contemporaneous Delta infection, when using the proxy marker of RTD. Under-ascertainment of reinfections with an immune escape variant remains a challenge to accurately assessing variant virulence

    Clinical management of COVID-19: Experiences of the COVID-19 epidemic from Groote Schuur Hospital, Cape Town, South Africa

    Get PDF
    The SARS-CoV-2 pandemic has presented clinicians with an enormous challenge in managing a respiratory virus that is not only capable of causing severe pneumonia and acute respiratory distress syndrome, but also multisystem disease. The extraordinary pace of clinical research, and particularly the surge in adaptive trials of new and repurposed treatments, have provided rapid answers to questions of whether such treatments work, and has resulted in corticosteroids taking centre stage in the management of hospitalised patients requiring oxygen support. Some treatment modalities, such as the role of anticoagulation to prevent and treat potential thromboembolic complications, remain controversial, as does the use of high-level oxygen support, outside of an intensive care unit setting. In this paper, we describe the clinical management of COVID-19 patients admitted to Groote Schuur Hospital, a major tertiary level hospital at the epicentre of South Africa’s SARS-CoV-2 epidemic during its first 4 months

    Outcomes of laboratory-confirmed SARS-CoV-2 infection during resurgence driven by Omicron lineages BA.4 and BA.5 compared with previous waves in the Western Cape Province, South Africa

    Get PDF
    OBJECTIVE: We aimed to compare clinical severity of Omicron BA.4/BA.5 infection with BA.1 and earlier variant infections among laboratory-confirmed SARS-CoV-2 cases in the Western Cape, South Africa, using timing of infection to infer the lineage/variant causing infection. METHODS: We included public sector patients aged ≥20 years with laboratory-confirmed COVID-19 between 1-21 May 2022 (BA.4/BA.5 wave) and equivalent prior wave periods. We compared the risk between waves of (i) death and (ii) severe hospitalization/death (all within 21 days of diagnosis) using Cox regression adjusted for demographics, comorbidities, admission pressure, vaccination and prior infection. RESULTS: Among 3,793 patients from the BA.4/BA.5 wave and 190,836 patients from previous waves the risk of severe hospitalization/death was similar in the BA.4/BA.5 and BA.1 waves (adjusted hazard ratio (aHR) 1.12; 95% confidence interval (CI) 0.93; 1.34). Both Omicron waves had lower risk of severe outcomes than previous waves. Prior infection (aHR 0.29, 95% CI 0.24; 0.36) and vaccination (aHR 0.17; 95% CI 0.07; 0.40 for at least 3 doses vs. no vaccine) were protective. CONCLUSION: Disease severity was similar amongst diagnosed COVID-19 cases in the BA.4/BA.5 and BA.1 periods in the context of growing immunity against SARS-CoV-2 due to prior infection and vaccination, both of which were strongly protective

    Higher mortality associated with the SARS-CoV-2 Delta variant in the Western Cape, South Africa, using RdRp target delay as a proxy: a cross-sectional study.

    Get PDF
    Background: The SARS-CoV-2 Delta variant (B.1.617.2) has been associated with more severe disease, particularly when compared to the Alpha variant. Most of this data, however, is from high income countries and less is understood about the variant’s disease severity in other settings, particularly in an African context, and when compared to the Beta variant. Methods: A novel proxy marker, RNA-dependent RNA polymerase (RdRp) target delay in the Seegene AllplexTM 2019-nCoV (polymerase chain reaction) PCR assay, was used to identify suspected Delta variant infection in routine laboratory data. All cases diagnosed on this assay in the public sector in the Western Cape, South Africa, from 1 April to 31 July 2021, were included in the dataset provided by the Western Cape Provincial Health Data Centre (PHDC). The PHDC collates information on all COVID-19 related laboratory tests, hospital admissions and deaths for the province. Odds ratios for the association between the proxy marker and death were calculated, adjusted for prior diagnosed infection and vaccination status. Results: A total of 11,355 cases with 700 deaths were included in this study. RdRp target delay (suspected Delta variant) was associated with higher mortality (adjusted odds ratio [aOR] 1.45; 95% confidence interval [CI]: 1.13-1.86), compared to presumptive Beta infection. Prior diagnosed infection during the previous COVID-19 wave, which was driven by the Beta variant, was protective (aOR 0.32; 95%CI: 0.11-0.92) as was vaccination (aOR [95%CI] 0.15 [0.03-0.62] for complete vaccination [≥28 days post a single dose of Ad26.COV2.S or ≥14 days post second BNT162b2 dose]). Conclusion: RdRp target delay, a proxy for infection with the Delta variant, is associated with an increased risk of mortality amongst those who were tested for COVID-19 in our setting

    Risk factors for Coronavirus Disease 2019 (COVID-19) death in a population cohort study from the Western Cape Province, South Africa

    Get PDF
    BACKGROUND. Risk factors for coronavirus disease 2019 (COVID-19) death in sub-Saharan Africa and the effects of human immunodeficiency virus (HIV) and tuberculosis on COVID-19 outcomes are unknown. METHODS. We conducted a population cohort study using linked data from adults attending public-sector health facilities in the Western Cape, South Africa. We used Cox proportional hazards models, adjusted for age, sex, location, and comorbidities, to examine the associations between HIV, tuberculosis, and COVID-19 death from 1 March to 9 June 2020 among (1) public-sector “active patients” (≥1 visit in the 3 years before March 2020); (2) laboratory-diagnosed COVID-19 cases; and (3) hospitalized COVID-19 cases. We calculated the standardized mortality ratio (SMR) for COVID-19, comparing adults living with and without HIV using modeled population estimates. RESULTS. Among 3 460 932 patients (16% living with HIV), 22 308 were diagnosed with COVID-19, of whom 625 died. COVID- 19 death was associated with male sex, increasing age, diabetes, hypertension, and chronic kidney disease. HIV was associated with COVID-19 mortality (adjusted hazard ratio [aHR], 2.14; 95% confidence interval [CI], 1.70–2.70), with similar risks across strata of viral loads and immunosuppression. Current and previous diagnoses of tuberculosis were associated with COVID-19 death (aHR, 2.70 [95% CI, 1.81–4.04] and 1.51 [95% CI, 1.18–1.93], respectively). The SMR for COVID-19 death associated with HIV was 2.39 (95% CI, 1.96–2.86); population attributable fraction 8.5% (95% CI, 6.1–11.1). CONCLUSIONS. While our findings may overestimate HIV- and tuberculosis-associated COVID-19 mortality risks due to residual confounding, both living with HIV and having current tuberculosis were independently associated with increased COVID-19 mortality. The associations between age, sex, and other comorbidities and COVID-19 mortality were similar to those in other settings.The Western Cape Provincial Health Data Centre from the Western Cape Department of Health, the US National Institutes for Health (grant numbers R01 HD0804, the Bill and Melinda Gates Foundation, the United States Agency for International Development and the Wellcome Trust.https://academic.oup.com/cid/am2023Veterinary Tropical Disease

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    Get PDF
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear. Funding: European and Developing Countries Clinical Trials Partnership; Swedish International Development Cooperation Agency; Wellcome Trust/UK Medical Research Council/UKAID Joint Global Health Trials; and UK National Institute for Health Research

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    Get PDF
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear

    TBDBT: A TB DataBase Template for collection of harmonized TB clinical research data in REDCap, facilitating data standardisation for inter-study comparison and meta-analyses

    No full text
    Clinical tuberculosis research, both within research groups and across research ecosystems, is often undertaken in isolation using bespoke data collection platforms and applying differing data conventions. This failure to harmonise clinical phenotype data or apply standardised data collection and storage standards in turn limits the opportunity to undertake meta-analyses using data generated across multiple research projects for the same research domain. We have developed the Tuberculosis DataBase Template (TBDBT), a template for the well-supported, free and commonly deployed clinical databasing platform, REDCap. This template can be used to set up a new tuberculosis research database with a built-in set of standardised data conventions, to ensure standardised data capture across research projects and programs. A modular design enables researchers to implement only the modules of the database template that are appropriate for their particular study. The template includes core modules for informed consent data, participant demographics, clinical symptoms and presentation, diagnostic imaging and laboratory tests. Optional modules have been designed for visit scheduling and calendar functionality, clinical trial randomisation, study logistics and operations, and pharmacokinetic data. Additional fields can be added as needed. This REDCap template can facilitate collection of high-quality data for tuberculosis research, providing a tool to ensure better data harmonisation, analysis and meta-analysis
    corecore