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Abstract 

Objective: We aimed to compare clinical severity of Omicron BA.4/BA.5 infection with 

BA.1 and earlier variant infections among laboratory-confirmed SARS-CoV-2 cases in the 

Western Cape, South Africa, using timing of infection to infer the lineage/variant causing 

infection. 

Methods: We included public sector patients aged ≥20 years with laboratory-confirmed 

COVID-19 between 1-21 May 2022 (BA.4/BA.5 wave) and equivalent prior wave periods. 

We compared the risk between waves of (i) death and (ii) severe hospitalization/death (all 

within 21 days of diagnosis) using Cox regression adjusted for demographics, comorbidities, 

admission pressure, vaccination and prior infection. 
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Results: Among 3,793 patients from the BA.4/BA.5 wave and 190,836 patients from 

previous waves the risk of severe hospitalization/death was similar in the BA.4/BA.5 and 

BA.1 waves (adjusted hazard ratio (aHR) 1.12; 95% confidence interval (CI) 0.93; 1.34). 

Both Omicron waves had lower risk of severe outcomes than previous waves. Prior infection 

(aHR 0.29, 95% CI 0.24; 0.36) and vaccination (aHR 0.17; 95% CI 0.07; 0.40 for at least 3 

doses vs. no vaccine) were protective. 

Conclusion: Disease severity was similar amongst diagnosed COVID-19 cases in the 

BA.4/BA.5 and BA.1 periods in the context of growing immunity against SARS-CoV-2 due 

to prior infection and vaccination, both of which were strongly protective.  
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Background 

The Omicron SARS-CoV-2 variant of concern (VOC) has been dominant globally since 

November 2021, with several sublineages causing surges in infections (Iketani et al., 2022, 

Tegally et al., 2022, Viana et al., 2022). South Africa experienced an initial large BA.1 

infection surge from November 2021 to January 2022. BA.1 was then replaced by BA.2 but 

with no increase in cases numbers, and this was followed by a BA.4/BA.5 infection surge 

between April and June 2022 (Tegally et al., 2022, Viana et al., 2022). BA.4 and BA.5 share 

all mutations with BA.2, except the following: S:69-70del, S:L452R, S:F486V and S:Q493 

(reversion to wild type). In addition, BA.4 is defined by ORF7b:L11F and N:P151S, whereas 

BA.5 is defined by M:D3N and ORF6:D61 (reversion to wild type) (Das et al., 2022, 

Dhawan et al., 2022, Kimura et al., 2022, Mohapatra et al., 2022). The combination of 

mutations in BA.4/BA.5 appear to confer a growth advantage over BA.2, as well as immune 

escape from vaccine-derived and BA.1 elicited antibodies (Khan et al., 2022, Tegally et al., 

2022). BA.4 and BA.5 infections have been dominant globally since July 2022 (Bedford et 

al., 2022, Callaway, 2022, UK Health Security Agency, 2022). 

We therefore compared outcomes of laboratory-confirmed SARS-CoV-2 infections during 

the April-June 2022 resurgence (proxy for BA.4/ BA.5 infection) with outcomes during each 

of the four previous waves in South Africa, each of which were caused by a different variant 

or sublineage, using data on patients with laboratory-confirmed SARS-CoV-2 infection aged 

≥20 years using public sector services in the Western Cape Province, South Africa. 

 

Methods: 

We conducted a cohort study using de-identified data from the Western Cape Provincial 

Health Data Centre (WCPHDC) of public sector patients aged ≥20 years with a laboratory 

confirmed COVID-19 diagnosis (positive SARS-CoV-2 PCR or antigen test). The Western 
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Cape has nearly 7 million inhabitants, of whom approximately 75% use public sector health 

services (Western Cape Department of Health, 2020). The WCPHDC and approach for this 

study have previously been described in detail (Boulle et al., 2019, Davies et al., 2022, 

Hussey et al., 2022, Western Cape Department of Health in collaboration with the National 

Institute for Communicable Diseases, 2020). Briefly, for this analysis, waves of infection 

were defined as starting and ending when the 7-day moving average of public sector COVID-

19 hospital admissions exceeded and dropped below 5 and 12 per million population 

respectively. We included cases diagnosed from seven days before the wave start to seven 

days before the wave end date to account for the lag between infection/first symptoms and 

hospitalization. We thus included data on cases diagnosed from 1-21 May 2022 for the 

BA.4/BA.5 wave, with follow-up through to 11 June 2022.This corresponds to the period 

when BA.4/BA.5 dominated in the province, accounting for 90% of sequenced cases in 

Western Cape (495/548; the remainder were BA.2 (n=51) with one BA.1 and one 

recombinant) as shown in Figure 1 (Network for Genomic Surveillance in South Africa, 

2022).  

We used Cox regression adjusted for age, sex, geographic location, comorbidities, service 

pressure (number of weekly admissions in the health district) at time of diagnosis, prior 

diagnosed infection (≥1 laboratory confirmed SARS-CoV-2 diagnosis ≥90 days previously) 

and SARS-CoV-2 vaccination to assess differences in the following COVID-19 outcomes 

between waves driven by different variants: (i) death and (ii) death or severe hospitalization 

(admission to intensive care or mechanical ventilation or oral/intravenous steroid 

prescription). We only included outcomes within 21 days of COVID-19 diagnosis for 

comparable ascertainment across all waves. All deaths within 21 days of a COVID-19 

diagnosis were included unless a clear non-COVID-19 cause of death was recorded. For 

patients with recorded South African national identity numbers, data are linked to the South 

African vital registry to identify deaths not recorded in the WCPHDC. Vaccination data was 
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obtained by linking the South African national identifier to the Electronic Vaccine Data 

System which records all vaccines administered in the country. The only vaccines available 

in South Africa to date are BNT162b2 and Ad26.COV2.S. For the regression models, 

vaccination status was categorized into five groups as (i) “≥3 doses” (three or more 

homologous or heterologous doses of any vaccine), (ii) “two doses” (two doses of any 

vaccine), (iii) “single dose Ad26.COV2.S” (single dose of Ad26.COV2.S), (iv) “single dose 

BNT162b2” (single dose of BNTB162b2), or (v) “unvaccinated”. Participants were 

considered to be in a particular vaccine group if they had received their last dose ≥7 days 

before COVID-19 diagnosis for “≥3 doses”, ≥14 days before for “two doses” and ≥28 days 

before for the single dose categories. 

The study was approved by the University of Cape Town and Stellenbosch University Health 

Research Ethics Committees and Western Cape Government: Health. Individual informed 

consent requirement was waived for this secondary analysis of de-identified data. 

 

Results 

We included 3,793 patients diagnosed in the BA.4/BA.5 wave and 27,614 (BA.1), 68,715 

(Delta), 54,268 (Beta) and 40,204 (ancestral) in waves driven by previous variants (Table 1). 

The proportion of patients who died within 21 days of COVID-19 diagnosis varied across 

waves and was 1.9% (BA.4/BA.5), 2.5% (BA.1), 6.4% (Delta), 6.9% (Beta) and 5.3% 

(ancestral). The proportion with prior diagnosed infection was substantially higher in the 

BA.4/BA.5 (18.9%) and BA.1 (11.9%) waves compared to previous waves (<3%). In the 

BA.4/BA.5 wave, 12.9% of COVID-19 cases had received “single dose Ad26.COV2.S” 

vaccination, 3.9% “single dose BNT162b2”, 36.1% had received “two doses” and 6.7% had 

received “≥3 doses”..   
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The adjusted hazard of severe hospitalization or death in the BA.4/BA.5 wave was similar to 

the BA.1 wave (adjusted hazard ratio [aHR] 1.12; 95% confidence interval [CI]: 0.93; 1.34) 

(Table 2). Both Omicron-driven waves had lower hazards of severe hospitalization or death 

than previous waves (Table 2). Prior diagnosed infection was strongly protective against 

severe hospitalization or death (aHR 0.29; 95% CI 0.24; 0.36) as was vaccination with aHR 

(95% CI) of 0.17 (0.07; 0.40); 0.37 (0.33; 0.42);0.26 (0.21; 0.32) and 0.61 (0.56; 0.67) for 

“≥3 doses”, “two doses”, “single dose Ad26.COV2.S” and “single dose BNT162b2”, 

respectively. In a model not adjusting for vaccination and prior diagnosed infection, the 

hazard of severe hospitalization or death in the BA.4/BA.5 vs. BA.1 waves was reduced 

compared to the fully adjusted model (aHR 0.90; 95% CI: 0.75; 1.08).  In an analysis 

restricted to the BA.4/BA.5 period, prior diagnosed infection remained strongly protective 

against severe hospitalization or death (aHR 0.23; 95% CI 0.10; 0.52) as did vaccination 

expect for “single dose BNT162b2” (aHR [95% CI]: 0.20 (0.08; 0.49); 0.39 (0.25; 0.59);  

0.51 (0.27; 0.99) and 0.94 (0.44; 1.99) for “≥3 doses”, “two doses”, “single dose 

Ad26.COV2.S” and “single dose BNT162b2”, respectively. Results were all similar when 

examining the outcome of death alone.  

 

Discussion 

Using the period of diagnosis as a proxy for being infected with different Omicron 

sublineages in the Western Cape, we found no difference in the risk of severe COVID-19 

hospitalization or death during the BA.4/BA.5 period compared to the BA.1 period, both of 

which had better outcomes than previous waves. Strong protection against severe COVID-19 

conferred by prior infection and vaccination was retained in the BA.4/BA.5 wave, with three 

homologous doses of Ad26.COV2.S or BNT162b2 or a heterologous combination of these 
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providing 83% protection (95% CI 60; 93%) against severe COVID-19 hospitalization or 

death amongst laboratory-confirmed cases.  

A study in animals recently suggested that BA.4/BA.5 may be more pathogenic than BA.2 

(Kimura et al., 2022). Although we did not compare BA.4/BA.5 with BA.2 directly as BA.2 

did not cause a distinguishable surge in infections in the Western Cape, disease severity of 

BA.2 and BA.1 are similar (Lewnard et al., 2022) and we found no evidence of worse clinical 

outcomes with BA.4/BA.5 compared to BA.1. Nonetheless, our findings need to be 

interpreted in the context of South African SARS-CoV-2 epidemiology with progressively 

increasing seroprevalence due to prior infection (mostly undiagnosed) and/or vaccination 

(Bingham et al., 2022, Madhi et al., 2022, Sun et al., 2022). For example, among blood 

donors, after the BA.1 wave the estimated national prevalence of anti-nucleocapsid 

antibodies was 87% (indicating previous infection) with a further 10% having anti-spike 

antibodies only (suggesting vaccination without prior infection) (Bingham et al., 2022). Since 

anti-nucleocapsid antibodies have lower sensitivity for identifying previous infections and 

may wane, it is possible that previous exposure to SARS-CoV-2 infections and/or vaccination 

may even exceed 97%. Indeed, our finding that the aHR shifted towards a lower risk of 

severe outcomes during BA.4/BA.5 vs. BA.1 in models not accounting for vaccination and 

prior diagnosed infection, suggests that the observed continued ecologic decoupling of 

COVID-19 cases and severe outcomes is at least partly due to growing protection against 

severe disease from both prior infection and vaccination. The observed clinical outcomes of 

infection with BA.4/BA.5 may therefore be different in settings with different prior variant 

infection and vaccination exposure. With the progression of the SARS-CoV-2 pandemic 

globally, it is increasingly difficult to determine the clinical severity of any variant in a 

completely naïve individual. However, for health service planning this is less relevant than 

the real-world effect in populations with varying degrees of immune protection (Mefsin et al., 

2022). For example, although we showed similar risk of severe hospitalization or death in the 
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BA.4/BA.5 and BA.1 waves when adjusted for vaccination and prior diagnosed infection, the 

actual burden of admissions and deaths was much lower in the BA.4/BA.5 waves, with the 

peak 7-day moving average of admissions and deaths being 222 and 36 in the BA.1 wave vs. 

66 and 9 in the BA.4/BA.5 wave. The ability to use routine data to rapidly assess the relative 

severity of waves caused by different lineages and variants adjusted for comorbidities, 

vaccination and prior infection has been especially valuable for local health service planning 

(Davies et al., 2022).   

To our knowledge, this is one of the first comparisons of clinical severity of BA.4/BA.5 

infections with previous variants with relatively complete adjustment for comorbidities and 

vaccination among all diagnosed cases. Nonetheless, this type of data and analysis have 

several limitations which have been described in detail previously (Davies et al., 2022). 

These include using the time of infection as a proxy for the variant causing infection rather 

than actual genomic sequencing or PCR test proxies (Wolter et al., 2022) which would be 

more accurate, could allow assessing the biological effect associated with specific mutations 

and would overcome  challenges with comparing disease severity across waves due to 

differences in testing practices, treatment availability and health service pressures. Notably, 

testing in the BA.4/BA.5 wave was at the lowest levels since the start of the pandemic with 

less testing of patients with milder disease, hence we may have over-estimated disease 

severity in this wave. For example, the peak weekly testing rate in the BA.4/BA.5 wave in the 

Western Cape was only 1/3 of that during the BA.1 wave (256 vs 756 tests per week per 

100,000 population). While we would have liked to assess the effects of time since 

vaccination and homologous vs. heterologous vaccine doses, it was not possible to do this 

analysis due to small numbers of participants with each of the different vaccine combinations 

and durations since last dose (Lyke et al., 2022). The routine health care data used did not 

allow us to distinguish between severe hospitalizations and deaths where the diagnosis of 

COVID-19 may have been incidental or contributory rather than causal. We also had 
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incomplete ascertainment of key covariates especially prior diagnosed infection due to 

substantial missed diagnoses (only 19% of our BA.4/BA.5 cases had prior diagnosed 

infection whereas seroprevalence studies suggest at least 87% of the population had previous 

infection before the BA.4/BA.5 wave) (Bingham et al., 2022) and only including infections 

that were diagnosed more than 90 days apart. Similarly, due to the small numbers of patients 

with prior diagnosed infection and severe disease in the BA.4/BA.5 wave (n=6) we were 

unable to assess whether there were differences in the extent of protection conferred by 

previous infection with different variants, and even in those with prior diagnosed infection it 

is possible that they had additional unascertained infections in other waves that may have 

impacted on their protection against severe disease due to BA.4/BA.5. Further, we had no 

data on vaccinations received outside of the province or without submitting a South African 

identity number and undiagnosed comorbidities as we can only adjust for those 

algorithmically identified in the WCPHDC. 

In conclusion, we found similar disease severity amongst diagnosed COVID-19 cases in the 

BA.4/BA.5 and BA.1 periods, both of which were associated with less severe outcomes than 

waves caused by previous SARS-CoV-2 variants. This finding is in the context of growing 

immunity against SARS-CoV-2 with strong protection against severe outcomes conferred by 

prior infection and vaccination, especially >3 doses. Three homologous doses of 

Ad26.COV2.S or BNT162b2 or a heterologous combination provided 83% protection (95% 

CI 60; 93%) against severe COVID-19 hospitalization or death amongst laboratory-

confirmed cases. Ensuring that individuals at high risk of severe COVID-19 outcomes have at 

least three vaccine doses remains a key strategy to limit the public health impact of further 

COVID-19 waves. Further research is needed to understand the specific differences in viral 

phenotype caused by the mutations in BA.4 and BA.5 as these mutations may occur in future 

variants and subvariants. In addition, it would be useful to quantify the protection provided 

by different types of immunity such as natural infection with different variants, hybrid 
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immunity (natural infection with vaccination) and heterologous vs. homologous vaccination 

as well as waning of immunity. 

 

Acknowledgements 

We would like to acknowledge all patients in the Western Cape and to thank the Western 

Cape Department of Health Provincial Health Data Centre (WCPHDC), the South African 

National Department of Health and the Electronic Vaccine Data System, the Western Cape 

Department of Health COVID-19 Outbreak Response Team, the Western Cape 

Communicable Disease Control sub-directorate and Western Cape health care workers 

involved in the COVID-19 response for their contributions to this report.  

 

Funding Sources 

We acknowledge funding for the Western Cape Provincial Health Data Centre from the 

Western Cape Department of Health, the US National Institutes for Health (R01 HD080465, 

U01 AI069924), the Bill and Melinda Gates Foundation (1164272, 1191327), the United 

States Agency for International Development (72067418CA00023), the European Union 

(101045989) and the Grand Challenges ICODA pilot initiative delivered by Health Data 

Research UK and funded by the Bill & Melinda Gates and Minderoo Foundations (INV-

017293). Funding was also received from Wellcome (203135/Z/16/Z [RJW, GM, 

WCPHDC], 222574 [RJW, WCPHDC] 214321/Z/18/Z [GM]) and the Medical Research 

Council of South Africa (RJW, MAD). RJW additionally receives support from the Francis 

Crick Institute which is funded by Wellcome (FC0010218), MRC (UK) (FC0010218), and 

Cancer Research UK (FC0010218). GM is also funded by the South African Research Chairs 

Initiative of the Department of Science and Technology and National Research Foundation 

(NRF) of South Africa (Grant No 64787). The funders had no role in the study design, data 

                  



13 
 

collection, data analysis, data interpretation, or writing of this report. The opinions, findings 

and conclusions expressed in this manuscript reflect those of the authors alone. For the 

purposes of open access the author has applied a CC-BY public copyright to any author 

accepted version arising from this submission. 

 

Conflict of interest 

All authors declare that they have no conflicts of interest. 

 

Ethical approval statement 

The study was approved by the University of Cape Town and Stellenbosch University Health 

Research Ethics Committees and Western Cape Government: Health. Individual informed 

consent requirement was waived for this secondary analysis of de-identified data.  

 

Figure 1: Number of SARS-CoV-2 diagnosed infections, proportion of SARS-CoV-2 tests 

that are positive PTP), number of specimens sequenced and distribution of different SARS-

CoV-2 variants and subvariants in the Western Cape (WC), South Africa by epidemiologic 

week from 1 January 2021 to 25 June 2022. Courtesy Network for Genomics Surveillance in 

South Africa. 

 

 

 

Table 1: Characteristics and outcomes of COVID-19 cases included from each infection 

period in the Western Cape 

 

Table 2: Associations between different infection periods and severe COVID-19 outcomes 

adjusted for patient characteristics, sub-district, vaccination, and prior diagnosed infection 

using Cox regression. 
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Table 1: Characteristics and outcomes of COVID-19 cases included from each infection period in the Western Cape 

  

Ancestral wave 
25 Apr to 22 Jul 2020

a
 

(n=40,204) 

Beta wave  
3 Nov 2020 to 22 Jan 2021

a
 

(n=54,268) 

Delta wave 
30 May to 10 Sep 2021

a
  

(n=68,750) 

BA.1 wave 
27 Nov 2021 to 12 Jan 2022

a
 

(n=27,614) 

BA.4/BA.5 wave 
1 May to 21 May 2022

a
 

(n=3,793) 

Male sex 13,380 (33.3%) 19,083 (35.2%) 25,948 (37.7%) 9,630 (34.9%) 1,327 (35.0%) 
      

Age 
     

  20-39  years 18,720 (46.6%) 21,839 (40.2%) 29,720 (43.2%) 13,944 (50.5%) 1,783 (47.0%) 

  40-49 years 8,280 (20.6%) 10,594 (19.5%) 14,163 (20.6%) 4,905 (17.8%) 767 (20.2%) 

  50-59 years 6,982 (17.4%) 10,493 (19.3%) 13,294 (19.3%) 4,216 (15.3%) 623 (16.4%) 

  60-69 years 3,733 (9.3%) 6,929 (12.8%) 6,780 (9.9%) 2,554 (9.3%) 333 (8.8%) 

  ≥70 years 2,489 (6.2%) 4,413 (8.1%) 4,793 (7.0%) 1,995 (7.2%) 287 (7.6%) 
      

Non-communicable diseases 
     

   diabetes 8,265 (20.6%) 11,509 (21.1%) 11,581 (16.9%) 3,627 (13.1%) 406 (10.7%) 

   hypertension 13,065 (32.5%) 19,070 (35.1%) 21,170 (30.8%) 7,063 (25.6%) 842 (22.2%) 

   chronic kidney disease 2,013 (5.0%) 2,778 (5.2%) 3,018 (4.4%) 958 (3.5%) 124 (3.3%) 

   chronic pulmonary disease / asthma 3,099 (7.7%) 4,661 (8.6%) 6,434 (9.4%) 3,040 (11.0%) 411 (10.8%) 
      

Tuberculosis 
     

   previous tuberculosis 2,777 (6.9%) 3,450 (6.4%) 4,850 (7.1%) 2,229 (8.1%) 232 (6.1%) 

   current tuberculosis 513 (1.3%) 555 (1.0%) 803 (1.2%) 578 (2.1%) 76 (2.0%) 
      

HIV positive 6,203 (15.4%) 5,512 (10.2%) 5,925 (8.6%) 3,298 (11.9%) 307 (8.1%) 
      

Prior diagnosed SARS-CoV-2 infection 0 (0%) 618 (1.1%) 1,798 (2.6%) 3,179 (11.5%) 715 (18.9%) 
      

Vaccination
b
 

     
  none N/A N/A 63,644 (92.6%) 14,471 (52.4%) 1,535 (40.5%) 

  single dose Ad26.COV2.S N/A N/A 2,501 (3.6%) 4,069 (14.7%) 488 (12.9%) 

  single dose BNT162b2 N/A N/A 2,289 (3.3%) 1,144 (4.1%) 147 (3.9%) 

  2 doses Ad26.COV2.S N/A N/A 30 (0.04%) 1,127 (4.1%) 298 (7.9%) 

  2 doses BNT162b2 N/A N/A 286 (0.4%) 6,763 (24.5%) 1,067 (28.1%) 

  2 doses Ad26.COV2.S + BNT162b2 N/A N/A N/A N/A 5 (0.1%) 

  ≥3 doses Ad26.COV2.S N/A N/A N/A 36 (0.1%) 38 (1.0%) 

  ≥3 doses BNT162b2 N/A N/A N/A 4 (0.01%) 192 (5.1%) 

  ≥3 doses Ad26.COV2.S + BNT162b2 N/A N/A N/A N/A 23 (0.6%) 
      

Outcomes within 21 days of diagnosis 

   
  

   severe admission (not deceased)
c
 N/A

c
 1,916 (3.5%) 2,066 (3.0%) 481 (1.7%) 61 (1.6%) 

   death 2,147 (5.3%) 3,717 (6.9%) 4368 (6.4%) 699 (2.5%) 70 (1.9%) 
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aDate of diagnoses for cases included in each wave. We included cases diagnosed from 7 days prior to the "wave start" to the date of wave end (deemed to occur when 7 day moving average of daily new public sector 
admissions exceeded 5/million (start) and dropped below 12/million (end) respectively).  bVaccination is summarized as vaccine type and number of doses provided diagnosis was ≥28 days after first dose, ≥14 days after 
second dose, and ≥7 days after third dose; cAdmission to an intensive care unit, mechanical ventilation or prescription of oral or intravenous steroids; not reported for wave 1 as steroids not widely used until after 16 June 
2020. N/A = not applicable 
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Table 2: Associations between different infection periods and severe COVID-19 outcomes adjusted for patient 

characteristics, sub-district, vaccination, and prior diagnosed infection using Cox regression. 

 

 

  

Outcome = death 
not adjusted for 

vaccination and prior 
infection 

Outcome = death 
adjusted for vaccination 

and prior infection 

 

Outcome = severe 
hospitalizationa/death 

not adjusted for 
vaccination or prior 
diagnosed infection 

Outcome = severe 
hospitalizationa/death 

adjusted for 
vaccination or prior 
diagnosed infection 

  

Adjustedb 
HR 

95% CI 
Adjusted 

HR 
95% CI 

 

Adjustedb 
HR 

95% CI 
Adjusted 

HR 
95% CI 

Male sex (vs. female) 1.40 1.34; 1.45 1.40 1.34; 1.45 
 

1.27 1.23; 1.31 1.26 1.22; 1.30 

Age (vs. 20-39 years) 
         

   40-49 years 2.54 2.30; 2.81 2.57 2.33; 2.84 
 

2.00 1.87; 2.15 2.04 1.90; 2.19 

   50-59 years 5.46 4.99; 5.97 5.56 5.08; 6.08 
 

3.42 3.21; 3.65 3.50 3.28; 3.74 

   60-69 years 12.55 11.47; 13.73 12.88 11.77; 14.10 
 

6.39 5.97; 6.83 6.56 6.13; 7.01 

   ≥70 years 23.19 21.15; 25.43 23.93 21.82; 26.24 
 

10.35 9.65; 11.09 10.65 9.94; 11.42 

Comorbidities (vs. comorbidity absent) 

    
     

   diabetes  2.01 1.92; 2.10 2.01 1.93; 2.10 
 

1.97 1.89; 2.04 1.98 1.91; 2.06 

   hypertension 1.08 1.03; 1.13 1.07 1.02; 1.12 
 

1.18 1.14; 1.23 1.17 1.13; 1.22 

   chronic kidney disease 1.90 1.80; 2.00 1.90 1.81; 2.00 
 

1.63 1.56; 1.70 1.63 1.56; 1.70 

   chronic pulmonary disease / asthma 0.98 0.93; 1.04 0.99 0.93; 1.04 
 

1.18 1.13; 1.23 1.19 1.14; 1.24 

   previous tuberculosis 1.30 1.20; 1.40 1.28 1.19; 1.38 
 

1.25 1.17; 1.33 1.23 1.16; 1.31 

   current tuberculosis 2.53 2.20; 2.91 2.44 2.13; 2.81 
 

2.89 2.59; 3.23 2.79 2.50; 3.11 

   HIV 1.60 1.48; 1.72 1.60 1.49; 1.72 
 

1.54 1.45; 1.64 1.54 1.45; 1.64 

Number of admissions in district in week 
of diagnosis (vs <1/3 of maximum)   

  
 

      1/3 to <2/3 1.11 1.05; 1.17 1.12 1.06; 1.18 
 

1.03 0.98; 1.08 1.04 0.99; 1.09 

  ≥2/3 1.12 1.05; 1.20 1.13 1.06; 1.21 
 

1.05 0.99; 1.11 1.06 1.00; 1.12 

Prior diagnosed SARS CoV-2 infection 

    
   

     Yes (vs none) 

  

0.51 0.42; 0.63 
   

0.29 0.24; 0.36 

Vaccination (vs. None)c 

  
       

  single dose  BNT162b2   0.56 0.49; 0.63    0.61 0.56; 0.67 

  single dose Ad26.COV2.S 

  

0.24 0.18; 0.33 
   

0.26 0.21; 0.32 

  two doses (Ad26.COV2.S and/or  
                       BNT162b2) 

  

0.36 0.31; 0.42 
   

0.37 0.33; 0.42 

  boosted (≥ 3doses Ad26.COV2.S  
                   and/or BNT162b2) 

  

0.06 0.01; 0.40 
   

0.17 0.07; 0.40 

Wave period (dominant variant) 

    
     

   wave 1 (ancestral) 2.08 1.90; 2.28 1.30 1.17; 1.44 
 

N/Aa 

 

N/Aa 

    wave 2 (Beta) 2.35 2.16; 2.57 1.47 1.34; 1.62 
 

2.06 1.93; 2.20 1.28 1.20; 1.38 

   wave 3 (Delta) 2.58 2.37; 2.81 1.75 1.59; 1.92 
 

2.16 2.03; 2.29 1.44 1.35; 1.54 

   wave 4 (Omicron BA.1) Ref 
 

Ref 

 
 

Ref 

 

Ref 

    wave 5 (Omicron BA.4/BA.5) 0.93 0.72; 1.20 1.16 0.90; 1.50   0.90 0.75; 1.08 1.12 0.93; 1.34 
aAdmission to an intensive care unit, mechanical ventilation or prescription of oral or intravenous steroids; not reported for wave 1 as steroids not widely used 
until after 16 June 2020. bAdjusted for all variables shown in the table as well as subdistrict/district, but not for vaccination or prior diagnosed infection 

cVaccination status is categorized as “single dose BNT162b2” (≥28 days after single dose BNT162b2), “single dose  Ad26.COV2.S”  (≥28 days after single dose 
Ad26.COV2.S), “two doses” (≥14 days after second dose of homologous or heterologous vaccination with Ad26.COV2.S and/or BNT162b2), and “boosted” (≥7 days 
after third dose of homologous or heterologous vaccination with Ad26.COV2.S and/or BNT162b2); HR = Hazard Ratio; CI = Confidence Interval; N/A = not 
applicable 

                  


