854 research outputs found

    Searching for antimicrobial photosensitizers among a panel of BODIPYs

    Get PDF
    In recent years, antimicrobial Photodynamic Therapy (aPDT) gained increasing attention for its potential to inhibit the growth and spread of microorganisms, both as free-living cells and/or embedded in biofilm communities. In this scenario, compounds belonging to the family of boron-dipyrromethenes (BODIPYs) represent a very promising class of photosensitizers for applications in antimicrobial field. In this study, twelve non-ionic and three cationic BODIPYs were assayed for the inactivation of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. As expected, S. aureus showed to be very sensitive to BODIPYs and mild conditions were sufficient to reach good rates of photoinactivation with both neutral and monocationic ones. Surprisingly, one neutral compound (named B9 in this study) resulted the best BODIPY to photoinactivate P. aeruginosa PAO1. The photoinactivation of C. albicans was reached with both neutral and mono-cationic BODIPYs. Furthermore, biofilms of the three model microorganisms were challenged with BODIPYs in light-based antimicrobial technique. S. aureus biofilms were successfully inhibited with milder conditions than those applied to P. aeruginosa and C. albicans. Notably, it was possible to eradicate 24-h-old biofilms of both S. aureus and P. aeruginosa. In conclusion, this study supports the potential of neutral BODIPYs as pan-antimicrobial PSs. Graphical abstract: [Figure not available: see fulltext.]

    Photo-Inactivation of Staphylococcus aureus by Diaryl-Porphyrins

    Get PDF
    Photodynamic Antimicrobial Chemotherapy (PACT) has received great attention in recent years since it is an effective and promising modality for the treatment of human oral and skin infections with the advantage of bypassing pathogens' resistance to antimicrobials. Moreover, PACT applications demonstrated a certain activity in the inhibition and eradication of biofilms, overcoming the well-known tolerance of sessile communities to antimicrobial agents. In this study, 13 diaryl-porphyrins (mono-, di-cationic, and non-ionic) P1-P13 were investigated for their potential as photosensitizer anti-Staphylococcus aureus. The efficacy of the diaryl-porphyrins was evaluated through photo-inactivation tests. Crystal-violet staining combined with viable count techniques were aimed at assaying their anti-biofilm activity. Among the tested compounds, the neutral photosensitizer P4 was better than the cationic ones, irrespective of their corresponding binding rates. In particular, P4 was active in inhibiting the biofilm formation and in impairing the viability of the adherent and planktonic populations of a 24 h old biofilm. The inhibitory activity was also efficient against a methicillin resistant S. aureus strain. In conclusion, the diaryl-porphyrin family represents a reservoir of promising compounds for photodynamic applications against the pathogen S. aureus and in preventing the formation of biofilms that cause many infections to become chronic

    Source characterization guidelines for noise mapping of port areas

    Get PDF
    Maritime transport for both passengers and freight is continuously increasing and, consequently, the global attention toward its sustainability is growing. Ships offer advantages in terms of environmental impact compared to other transportation systems but the increasing traffic volume is expected to increase pollutants. Noise produced in port areas has been neglected for too long, until the INTERREG Maritime programme Italy-France 2014\u20132020 has brought to light how citizen complaints are emerging for some of the main ports in the Mediterranean. However, port noise prevention and management is difficult as knowledge on specific sources is very limited in the literature. Furthermore, on field measurements are difficult to be performed given the complexity of the port area, where multiple types of sound emitters mix and confuse each other. Noise maps represent the first important step in order to align ports to the requirements set by the Environmental Noise Directive to the transportation infrastructures. Once computed, they are an excellent tool supporting port management towards the reduction of citizens\u2019 noise exposure while ensuring traffic growth. The present paper reports a guideline for the characterization of noise sources needed as inputs for the noise maps, as developed in the framework of the INTERREG Maritime programme Italy-France 2014\u20132020. On the basis of the current state of the art, a procedure has been elaborated for different categories of noise sources acting in port, ranging from stationary to moving ships, from mooring operations to loading/unloading operations, from industrial activities to road and railway traffic

    Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields

    Get PDF
    Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presente

    Evaluation of individual monitoring in mixed neutron/photon fields: mid-term results from the EVIDOS project

    Get PDF
    EVIDOS is an EC sponsored project that aims at an evaluation and improvement of radiation protection dosimetry in mixed neutron/photon fields. This is performed through spectrometric and dosimetric investigations during different measurement campaigns in representative workplaces of the nuclear industry. The performance of routine and, in particular, novel personal dosemeters and survey instruments is tested in selected workplace fields. Reference values for the dose equivalent quantities, H*(10) and Hp(10) and the effective dose E, are determined using different spectrometers that provide the energy distribution of the neutron fluence and using newly developed devices that determine the energy and directional distribution of the neutron fluence. The EVIDOS project has passed the mid-term, and three measurement campaigns have been performed. This paper will give an overview and some new results from the third campaign that was held in Mol (Belgium), around the research reactor VENUS and in the MOX producing plant of Belgonucléair

    Characterisation of mixed neutron-photon workplace fields at nuclear facilities by spectrometry (energy and direction) within the EVIDOS project

    Get PDF
    Within the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discusse

    Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part II: conclusions and recommendations

    Get PDF
    The paper presents the main conclusions and recommendations derived from the EVIDOS project, which is supported by the European Commission within the 5th Framework Programme. EVIDOS aims at evaluating state of the art neutron dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This analysis complements a series of individual papers which present detailed results and it summarises the main findings from a practical point of view. Conclusions and recommendations are given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosemeter result

    Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low ν\nu Method

    Get PDF
    We investigate the "low-ν\nu" method (developed by the CCFR/NUTEV collaborations) to determine the neutrino flux in a wide band neutrino beam at very low energies, a region of interest to neutrino oscillations experiments. Events with low hadronic final state energy ν<νcut\nu<\nu_{cut} (of 1, 2 and 5 GeV) were used by the MINOS collaboration to determine the neutrino flux in their measurements of neutrino (νμ\nu_\mu) and antineutrino (\nub_\mu) total cross sections. The lowest νμ\nu_\mu energy for which the method was used in MINOS is 3.5 GeV, and the lowest \nub_\mu energy is 6 GeV. At these energies, the cross sections are dominated by inelastic processes. We investigate the application of the method to determine the neutrino flux for νμ\nu_\mu, \nub_\mu energies as low as 0.7 GeV where the cross sections are dominated by quasielastic scattering and Δ\Delta(1232) resonance production. We find that the method can be extended to low energies by using νcut\nu_{cut} values of 0.25 and 0.50 GeV, which is feasible in fully active neutrino detectors such as MINERvA.Comment: 25 pages, 32 figures, to be published in European Physics Journal

    Achievements in workplace neutron dosimetry in the last decade: lessons learned from the EVIDOS project

    Get PDF
    The availability of active neutron personal dosemeters has made real time monitoring of neutron doses possible. This has obvious benefits, but is only of any real assistance if the dose assessments made are of sufficient accuracy and reliability. Preliminary assessments of the performance of active neutron dosemeters can be made in calibration facilities, but these can never replicate the conditions under which the dosemeter is used in the workplace. Consequently, it is necessary to assess their performance in the workplace, which requires the field in the workplace to be fully characterised in terms of the energy and direction dependence of the fluence. This paper presents an overview of developments in workplace neutron dosimetry but concentrates on the outcomes of the EVIDOS project, which has made significant advances in the characterisation of workplace fields and the analysis of dosemeter responses in those field

    Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part I: scope and methods of the project

    Get PDF
    Supported by the European Commission, the EVIDOS project started in November 2001 with the broad goal of evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry. Seven European institutes joined efforts with end users at nuclear power plants, at fuel processing and reprocessing plants, and at transport and storage facilities. A comprehensive programme was devised to evaluate capabilities and limitations of standard and innovative personal dosemeters in relation to the mixed neutron-photon fields of concern to the nuclear industry. This paper describes the criteria behind the selection of dosimetry techniques and workplaces that were analysed, as well as the organisation of the measurement campaigns. Particular emphasis was placed on the evaluation of a variety of electronic personal dosemeters, either commercially available or previously developed by the partners. The estimates provided by these personal dosemeters were compared to reference values of dose equivalent quantities derived from spectrometry and fluence-to-dose equivalent conversion coefficients. Spectrometry was performed both with conventional multisphere and with some original instrumentation providing energy and direction resolution, based on silicon detectors and superheated drop detectors mounted on or in spherical moderators. The results were collected in a large, searchable database and are intended to be used in the harmonisation of dosimetric procedures for mixed radiation fields and for the approval of dosimetry services in Europ
    • …
    corecore