37 research outputs found

    Adaptive dose finding based ont-statistic for dose–response trials

    Get PDF
    The goals of phase II dose–response studies are to prove that the treatment is effective and to choose the dose for further development. Randomized designs with equal allocation to either a high dose and placebo or to each of several doses and placebo are typically used. However, in trials where response is observed relatively quickly, adaptive designs might offer an advantage over equal allocation. We propose an adaptive design for dose–response trials that concentrates the allocation of subjects in one or more areas of interest, for example, near a minimum clinically important effect level, or near some maximal effect level, and also allows for the possibility to stop the trial early if needed. The proposed adaptive design yields higher power to detect a dose–response relationship, higher power in comparison with placebo, and selects the correct dose more frequently compared with a corresponding randomized design with equal allocation to doses

    Efficacy and safety of elinzanetant, a selective neurokinin-1,3 receptor antagonist for vasomotor symptoms: a dose-finding clinical trial (SWITCH-1)

    Get PDF
    OBJECTIVE: Neurokinin (NK)-3 and NK-1 receptors have been implicated in the etiology of vasomotor symptoms (VMS) and sleep disturbances associated with menopause. This phase 2b, adaptive, dose-range finding study aimed to assess the efficacy and safety of multiple doses of elinzanetant (NT-814), a selective NK-1,3 receptor antagonist, in women experiencing VMS associated with menopause, and investigate the impact of elinzanetant on sleep and quality of life. METHODS: Postmenopausal women aged 40 to 65 years who experienced seven or more moderate-to-severe VMS per day were randomized to receive elinzanetant 40, 80, 120, or 160 mg or placebo once daily using an adaptive design algorithm. Coprimary endpoints were reduction in mean frequency and severity of moderate-to-severe VMS at weeks 4 and 12. Secondary endpoints included patient-reported assessments of sleep and quality of life. RESULTS: Elinzanetant 120 mg and 160 mg achieved reductions in VMS frequency versus placebo from week 1 throughout 12 weeks of treatment. Least square mean reductions were statistically significant versus placebo at both primary endpoint time points for elinzanetant 120 mg (week 4: -3.93 [SE, 1.02], P \u3c 0.001; week 12: -2.95 [1.15], P = 0.01) and at week 4 for elinzanetant 160 mg (-2.63 [1.03]; P = 0.01). Both doses also led to clinically meaningful improvements in measures of sleep and quality of life. All doses of elinzanetant were well tolerated. CONCLUSIONS: Elinzanetant is an effective and well-tolerated nonhormone treatment option for postmenopausal women with VMS and associated sleep disturbance. Elinzanetant also improves quality of life in women with VMS

    A Randomized Trial of Rofecoxib for the Chemoprevention of Colorectal Adenomas

    Get PDF
    BACKGROUND & AIMS: In human and animal studies, nonsteroidal anti-inflammatory drugs have been associated with a reduced risk of colorectal neoplasia. Although the underlying mechanisms are unknown, inhibition of cyclooxygenase (COX), particularly COX-2, is thought to play a role. We conducted a randomized, placebo-controlled, double-blind trial to assess whether use of the selective COX-2 inhibitor rofecoxib would reduce the risk of colorectal adenomas. METHODS: We randomized 2587 subjects with a recent history of histologically confirmed adenomas to receive daily placebo or 25 mg rofecoxib. Randomization was stratified by baseline use of cardioprotective aspirin. Colonoscopic follow-up evaluation was planned for 1 and 3 years after randomization. The primary end point was all adenomas diagnosed during 3 years' treatment. In a modified intent-to-treat analysis, we computed the relative risk of any adenoma after randomization, using Mantel-Haenszel statistics stratified by low-dose aspirin use at baseline. RESULTS: Adenoma recurrence was less frequent for rofecoxib subjects than for those randomized to placebo (41% vs 55%; P < .0001; relative risk [RR], 0.76; 95% confidence interval [CI], 0.69-0.83). Rofecoxib also conferred a reduction in risk of advanced adenomas (P < .01). The chemopreventive effect was more pronounced in the first year (RR, 0.65; 95% CI, 0.57-0.73) than in the subsequent 2 years (RR, 0.81; 95% CI, 0.71-0.93). As reported previously, rofecoxib was associated with increased risks of significant upper gastrointestinal events and serious thrombotic cardiovascular events. CONCLUSIONS: In this randomized trial, rofecoxib significantly reduced the risk of colorectal adenomas, but also had serious toxicity

    The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes

    Get PDF
    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G0/G1. It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G0. Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G0/G1, but also for activation in S, G2 and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle

    Origins Space Telescope: Baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins\u27 natural background-limited sensitivity

    Baseline characteristics of patients in the reduction of events with darbepoetin alfa in heart failure trial (RED-HF)

    Get PDF
    &lt;p&gt;Aims: This report describes the baseline characteristics of patients in the Reduction of Events with Darbepoetin alfa in Heart Failure trial (RED-HF) which is testing the hypothesis that anaemia correction with darbepoetin alfa will reduce the composite endpoint of death from any cause or hospital admission for worsening heart failure, and improve other outcomes.&lt;/p&gt; &lt;p&gt;Methods and results: Key demographic, clinical, and laboratory findings, along with baseline treatment, are reported and compared with those of patients in other recent clinical trials in heart failure. Compared with other recent trials, RED-HF enrolled more elderly [mean age 70 (SD 11.4) years], female (41%), and black (9%) patients. RED-HF patients more often had diabetes (46%) and renal impairment (72% had an estimated glomerular filtration rate &#60;60 mL/min/1.73 m2). Patients in RED-HF had heart failure of longer duration [5.3 (5.4) years], worse NYHA class (35% II, 63% III, and 2% IV), and more signs of congestion. Mean EF was 30% (6.8%). RED-HF patients were well treated at randomization, and pharmacological therapy at baseline was broadly similar to that of other recent trials, taking account of study-specific inclusion/exclusion criteria. Median (interquartile range) haemoglobin at baseline was 112 (106–117) g/L.&lt;/p&gt; &lt;p&gt;Conclusion: The anaemic patients enrolled in RED-HF were older, moderately to markedly symptomatic, and had extensive co-morbidity.&lt;/p&gt

    Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance.

    Get PDF
    The assessment of post-myocardial infarction (MI) left ventricular (LV) remodeling by cardiovascular magnetic resonance (CMR) currently uses criteria defined by echocardiography. Our aim was to provide CMR criteria for assessing LV remodeling following acute MI.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  μm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∼  300, and pointed observations at R  ∼  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity
    corecore