117 research outputs found

    Acute neurological care in north-east Germany with telemedicine support (ANNOTeM): protocol of a multi-center, controlled, open-label, two-arm intervention study

    Get PDF
    Background: Both diagnosis and treatment of neurological emergencies require neurological expertise and are time-sensitive. The lack of fast neurological expertise in regions with underserved infrastructure poses a major barrier for state-of-the-art care of patients with acute neurological diseases and leads to disparity in provision of health care. The main purpose of ANNOTeM (acute neurological care in North East Germany with telemedicine support) is to establish effective and sustainable support structures for evidence based treatments for stroke and other neurological emergencies and to improve outcome for acute neurological diseases in these rural regions. Methods: A “hub-and-spoke” network structure was implemented connecting three academic neurological centres (“hubs”) and rural hospitals (“spokes”) caring for neurological emergencies. The network structure includes (1) the establishment of a 24/7 telemedicine consultation service, (2) the implementation of standardized operating procedures (SOPs) in the network hospitals, (3) a multiprofessional training scheme, and (4) a quality management program. Data from three major health insurance companies as well as data from the quality management program are being collected and evaluated. Primary outcome is the composite of first time of receiving paid outpatient nursing care, first time of receiving care in a nursing home, or death within 90 days after hospital admission. Discussion: Beyond stroke only few studies have assessed the effects of telemedically supported networks on diagnosis and outcome of neurological emergencies. ANNOTeM will provide information whether this approach leads to improved outcome. In addition, a health economic analysis will be performed. Study registration: German Clinical Trials Register DRKS00013067, date of registration: November 16 th, 2017, URL: http://www.drks.de/DRKS0001306

    Functional outcomes of pre-hospital thrombolysis in a mobile stroke treatment unit compared with conventional care: an observational registry study

    No full text
    Background: Specialised CT-equipped mobile stroke treatment units shorten time to intravenous thrombolysis in acute ischaemic stroke by starting treatment before hospital admission; however, direct effects of pre-hospital thrombolysis on clinical outcomes have not been shown. We aimed to compare 3-month functional outcomes after intravenous thrombolysis in patients with acute ischaemic who had received emergency mobile care or and conventional care. Methods: In this observational registry study, patients with ischaemic stroke received intravenous thrombolysis (alteplase) either within a stroke emergency mobile (STEMO) vehicle (pre-hospital care covering 1·3 million inhabitants of Berlin) or within conventional care (normal ambulances and in-hospital care at the Charité Campus Benjamin Franklin in Berlin). Patient data on treatment, outcome, and demographics were documented in STEMO (pre-hospital) or conventional care (in-hospital) registries. The primary outcome was the proportion of patients who had lived at home without assistance before stroke and had a 3-month modified Rankin Scale (mRS) score of 1 or lower. Our multivariable logistic regression was adjusted for demographics, comorbidities, and stroke severity. This study is registered with ClinicalTrials.gov, number NCT02358772. Findings: Between Feb 5, 2011, and March 5, 2015, 427 patients were treated within the STEMO vehicle and their data were entered into a pre-hospital registry. 505 patients received conventional care and their data were entered into an in-hospital thrombolysis registry. Of these, 305 patients in the STEMO group and 353 in the conventional care group met inclusion criteria and were included in the analysis. 161 (53%) patients in the STEMO group versus 166 (47%) in the conventional care group had an mRS score of 1 or lower (p=0·14). Compared with conventional care, adjusted odds ratios (ORs) for STEMO care for the primary outcome (OR 1·40, 95% CI 1·00–1·97; p=0·052) were not significant. Intracranial haemorrhage (p=0·27) and 7-day mortality (p=0·23) did not differ significantly between treatment groups. Interpretation: We found no significant difference between the proportion of patients with a mRS score of 1 or lower receiving STEMO care compared with conventional care. However, our results suggest that pre-hospital start of intravenous thrombolysis might lead to improved functional outcome in patients. This evidence requires substantiation in future large-scale trials

    Elliptic anisotropy measurement of the f0_0(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition

    No full text
    International audienceDespite the f0_0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark (qqˉ\mathrm{q\bar{q}}) meson, a tetraquark (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}}) exotic state, a kaon-antikaon (KKˉ\mathrm{K\bar{K}}) molecule, or a quark-antiquark-gluon (qqˉg\mathrm{q\bar{q}g}) hybrid. This paper reports strong evidence that the f0_0(980) state is an ordinary qqˉ\mathrm{q\bar{q}} meson, inferred from the scaling of elliptic anisotropies (v2v_2) with the number of constituent quarks (nqn_\mathrm{q}), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0_0(980) state is reconstructed via its dominant decay channel f0_0(980) \toπ+π\pi^+\pi^-, in proton-lead collisions recorded by the CMS experiment at the LHC, and its v2v_2 is measured as a function of transverse momentum (pTp_\mathrm{T}). It is found that the nqn_q = 2 (qqˉ\mathrm{q\bar{q}} state) hypothesis is favored over nqn_q = 4 (qqˉqqˉ\mathrm{q\bar{q}q\bar{q}} or KKˉ\mathrm{K\bar{K}} states) by 7.7, 6.3, or 3.1 standard deviations in the pTp_\mathrm{T}<\lt 10, 8, or 6 GeV/cc ranges, respectively, and over nqn_\mathrm{q} = 3 (qqˉg\mathrm{q\bar{q}g} hybrid state) by 3.5 standard deviations in the pTp_\mathrm{T}<\lt 8 GeV/cc range. This result represents the first determination of the quark content of the f0_0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates

    Extracting the speed of sound in the strongly interacting matter created in ultrarelativistic lead-lead collisions at the LHC

    No full text
    International audienceUltrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we extracted the speed of sound in this medium created using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb1^{-1}. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of 0.241 ±\pm 0.002 (stat) ±\pm 0.016 (syst) in natural units. The effective medium temperature, estimated using the mean transverse momentum, is 219 ±\pm 8 (syst) MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions

    Search for CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    Test of lepton flavor universality in B± ⁣ ⁣K±μ+μ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} and B± ⁣ ⁣K±e+e {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- decays in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A test of lepton flavor universality in B± ⁣ ⁣K±μ+μ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} and B± ⁣ ⁣K±e+e {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B± ⁣ ⁣K±μ+μ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s= \sqrt{s} = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B(B± ⁣ ⁣K±μ+μ) \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) to B(B± ⁣ ⁣K±e+e) \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^-) is determined from the measured double ratio R(K) R(\mathrm{K}) of these decays to the respective branching fractions of the B± ⁣ ⁣J/ψK± {\mathrm{B}^{\pm}} \!\to\! {\mathrm{J}/\psi} \mathrm{K^{\pm}} with J/ψ ⁣ ⁣μ+μ {\mathrm{J}/\psi} \!\to\!\mu^{+}\mu^{-} and e+e \mathrm{e}^+\mathrm{e}^- decays, which allow for significant cancellation of systematic uncertainties. The ratio R(K) R(\mathrm{K}) is measured in the range 1.1 <q2< < q^2 < 6.0 GeV2^2 , where q q is the invariant mass of the lepton pair, and is found to be R(K)= R(\mathrm{K})= 0.78 0.23+0.47 ^{+0.47}_{-0.23} , in agreement with the standard model expectation R(K) R(\mathrm{K}) \approx 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same q2 q^2 range, B(B± ⁣ ⁣K±μ+μ)= \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) = (12.42 ± \pm 0.68) ×\times 108^{-8} , is consistent with the present world-average value and has a comparable precision.A test of lepton flavor universality in B±^{\pm}\to K±μ+μ^{\pm}\mu^+\mu^- and B±^{\pm}\to K±^{\pm}e+^+e^- decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B±^{\pm}\to K±μ+μ^{\pm}\mu^+\mu^- decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s\sqrt{s} = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B\mathcal{B}(B±^{\pm}\to K±μ+μ^{\pm}\mu^+\mu^-) to B\mathcal{B}(B±^{\pm}\to K±^{\pm}e+^+e^-) is determined from the measured double ratio RR(K) of these decays to the respective branching fractions of the B±^\pm\to J/ψ\psiK±^\pm with J/ψ\psi\toμ+μ\mu^+\mu^- and e+^+e^- decays, which allow for significant cancellation of systematic uncertainties. The ratio RR(K) is measured in the range 1.1 <q2<\lt q^2 \lt 6.0 GeV2^2, where qq is the invariant mass of the lepton pair, and is found to be RR(K) = 0.780.23+0.47^{+0.47}_{-0.23}, in agreement with the standard model expectation RR(K) \approx 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same q2q^2 range, B\mathcal{B}(B±^{\pm}\to K±μ+μ^{\pm}\mu^+\mu^-) = (12.42 ±\pm 0.68) ×\times 108^{-8}, is consistent with the present world-average value and has a comparable precision

    Review of top quark mass measurements in CMS

    No full text
    International audienceThe top quark mass is one of the most intriguing parameters of the standard model (SM). Its value indicates a Yukawa coupling close to unity, and the resulting strong ties to the Higgs physics make the top quark mass a crucial ingredient for understanding essential aspects of the electroweak sector of the SM. While it is such an important parameter of the SM, its measurement and interpretation in terms of the Lagrangian parameter are challenging. The CMS Collaboration has performed multiple measurements of the top quark mass, addressing these challenges from different angles: highly precise `direct' measurements, using the top quark decay products, as well as `indirect' measurements aiming at accurate interpretations in terms of the Lagrangian parameter. Recent mass measurements using Lorentz-boosted top quarks are particularly promising, opening a new avenue of measurements based on top quark decay products contained in a single particle jet, with superior prospects for accurate theoretical interpretations. Moreover, dedicated studies of the dominant uncertainties in the modelling of the signal processes have been performed. This review offers the first comprehensive overview of these measurements performed by the CMS Collaboration using the data collected at centre-of-mass energies of 7, 8, and 13 TeV

    Portable acceleration of CMS computing workflows with coprocessors as a service

    No full text
    International audienceComputing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors

    Review of top quark mass measurements in CMS

    No full text
    International audienceThe top quark mass is one of the most intriguing parameters of the standard model (SM). Its value indicates a Yukawa coupling close to unity, and the resulting strong ties to the Higgs physics make the top quark mass a crucial ingredient for understanding essential aspects of the electroweak sector of the SM. While it is such an important parameter of the SM, its measurement and interpretation in terms of the Lagrangian parameter are challenging. The CMS Collaboration has performed multiple measurements of the top quark mass, addressing these challenges from different angles: highly precise `direct' measurements, using the top quark decay products, as well as `indirect' measurements aiming at accurate interpretations in terms of the Lagrangian parameter. Recent mass measurements using Lorentz-boosted top quarks are particularly promising, opening a new avenue of measurements based on top quark decay products contained in a single particle jet, with superior prospects for accurate theoretical interpretations. Moreover, dedicated studies of the dominant uncertainties in the modelling of the signal processes have been performed. This review offers the first comprehensive overview of these measurements performed by the CMS Collaboration using the data collected at centre-of-mass energies of 7, 8, and 13 TeV
    corecore