1,419 research outputs found

    Breaking Through the Noise: Literacy Teachers in the Face of Accountability, Evaluation, and Reform

    Get PDF
    In an era of increased accountability, it is important to understand how exemplary teachers navigate the demands placed on them by their schools, districts, and states in order to support student learning aligned with their beliefs of effective instruction. To understand these negotiations, tensions facing exemplary literacy teachers were examined through a qualitative interview study. Participants included nineteen experienced PK-6th grade teachers from across the U.S. Results of the study indicate that teachers experience discrepancies between their beliefs and state and local mandates, and they discuss a variety of strategies for negotiating these discrepancies. Findings suggest that schools can support effective literacy instruction by cultivating cultures of autonomy for teachers and strengthening teachers’ sense of agency

    Thermal structure and exhumation history of the Lesser Himalaya in central Nepal

    Get PDF
    The Lesser Himalaya (LH) consists of metasedimentary rocks that have been scrapped off from the underthrusting Indian crust and accreted to the mountain range over the last ~20 Myr. It now forms a significant fraction of the Himalayan collisional orogen. We document the kinematics and thermal metamorphism associated with the deformation and exhumation of the LH, combining thermometric and thermochronological methods with structural geology. Peak metamorphic temperatures estimated from Raman spectroscopy of carbonaceous material decrease gradually from 520°–550°C below the Main Central Thrust zone down to less than 330°C. These temperatures describe structurally a 20°–50°C/km inverted apparent gradient. The Ar muscovite ages from LH samples and from the overlying crystalline thrust sheets all indicate the same regular trend; i.e., an increase from about 3–4 Ma near the front of the high range to about 20 Ma near the leading edge of the thrust sheets, about 80 km to the south. This suggests that the LH has been exhumed jointly with the overlying nappes as a result of overthrusting by about 5 mm/yr. For a convergence rate of about 20 mm/yr, this implies underthrusting of the Indian basement below the Himalaya by about 15 mm/yr. The structure, metamorphic grade and exhumation history of the LH supports the view that, since the mid-Miocene, the Himalayan orogen has essentially grown by underplating, rather than by frontal accretion. This process has resulted from duplexing at a depth close to the brittle-ductile transition zone, by southward migration of a midcrustal ramp along the Main Himalayan Thrust fault, and is estimated to have resulted in a net flux of up to 150 m^2/yr of LH rocks into the Himalayan orogenic wedge. The steep inverse thermal gradient across the LH is interpreted to have resulted from a combination of underplating and post metamorphic shearing of the underplated units

    Onset of dissipation in ballistic atomic wires

    Get PDF
    Electronic transport at finite voltages in free-standing gold atomic chains of up to 7 atoms in length is studied at low temperatures using a scanning tunneling microscope (STM). The conductance vs voltage curves show that transport in these single-mode ballistic atomic wires is non-dissipative up to a finite voltage threshold of the order of several mV. The onset of dissipation and resistance within the wire corresponds to the excitation of the atomic vibrations by the electrons traversing the wire and is very sensitive to strain.Comment: Revtex4, 4 pages, 3 fig

    Verification of a many-ion simulator of the Dicke model through slow quenches across a phase transition

    Full text link
    We use a self-assembled two-dimensional Coulomb crystal of 70\sim 70 ions in the presence of an external transverse field to engineer a simulator of the Dicke Hamiltonian, an iconic model in quantum optics which features a quantum phase transition between a superradiant/ferromagnetic and a normal/paramagnetic phase. We experimentally implement slow quenches across the quantum critical point and benchmark the dynamics and the performance of the simulator through extensive theory-experiment comparisons which show excellent agreement. The implementation of the Dicke model in fully controllable trapped ion arrays can open a path for the generation of highly entangled states useful for enhanced metrology and the observation of scrambling and quantum chaos in a many-body system.Comment: 6 + 5 pages, 2 + 5 figures. arXiv admin note: substantial text overlap with arXiv:1711.0739

    Dynamics of axialized laser-cooled ions in a Penning trap

    Full text link
    We report the experimental characterization of axialization - a method of reducing the magnetron motion of a small number of ions stored in a Penning trap. This is an important step in the investigation of the suitability of Penning traps for quantum information processing. The magnetron motion was coupled to the laser-cooled modified cyclotron motion by the application of a near-resonant oscillating quadrupole potential (the "axialization drive"). Measurement of cooling rates of the radial motions of the ions showed an order-of-magnitude increase in the damping rate of the magnetron motion with the axialization drive applied. The experimental results are in good qualitative agreement with a recent theoretical study. In particular, a classical avoided crossing was observed in the motional frequencies as the axialization drive frequency was swept through the optimum value, proving that axialization is indeed a resonant effect.Comment: 8 pages, 9 figure

    Trapped-ion probing of light-induced charging effects on dielectrics

    Full text link
    We use a string of confined 40^{40}Ca+^+ ions to measure perturbations to a trapping potential which are caused by light-induced charging of an anti-reflection coated window and of insulating patches on the ion-trap electrodes. The electric fields induced at the ions' position are characterised as a function of distance to the dielectric, and as a function of the incident optical power and wavelength. The measurement of the ion-string position is sensitive to as few as 4040 elementary charges per Hz\sqrt{\mathrm{Hz}} on the dielectric at distances of order millimetres, and perturbations are observed for illumination with light of wavelengths as long as 729\,nm. This has important implications for the future of miniaturised ion-trap experiments, notably with regards to the choice of electrode material, and the optics that must be integrated in the vicinity of the ion. The method presented can be readily applied to the investigation of charging effects beyond the context of ion trap experiments.Comment: 11 pages, 5 figure

    Lethal Mutagenesis of Picornaviruses with N-6-Modified Purine Nucleoside Analogues

    Get PDF
    RNA viruses exhibit extraordinarily high mutation rates during genome replication. Nonnatural ribonucleosides that can increase the mutation rate of RNA viruses by acting as ambiguous substrates during replication have been explored as antiviral agents acting through lethal mutagenesis. We have synthesized novel N-6-substituted purine analogues with ambiguous incorporation characteristics due to tautomerization of the nucleobase. The most potent of these analogues reduced the titer of poliovirus (PV) and coxsackievirus (CVB3) over 1,000-fold during a single passage in HeLa cell culture, with an increase in transition mutation frequency up to 65-fold. Kinetic analysis of incorporation by the PV polymerase indicated that these analogues were templated ambiguously with increased efficiency compared to the known mutagenic nucleoside ribavirin. Notably, these nucleosides were not efficient substrates for cellular ribonucleotide reductase in vitro, suggesting that conversion to the deoxyriboucleoside may be hindered, potentially limiting genetic damage to the host cell. Furthermore, a high-fidelity PV variant (G64S) displayed resistance to the antiviral effect and mutagenic potential of these analogues. These purine nucleoside analogues represent promising lead compounds in the development of clinically useful antiviral therapies based on the strategy of lethal mutagenesis

    Quantized Detector Networks: A review of recent developments

    Full text link
    QDN (quantized detector networks) is a description of quantum processes in which the principal focus is on observers and their apparatus, rather than on states of SUOs (systems under observation). It is a realization of Heisenberg's original instrumentalist approach to quantum physics and can deal with time dependent apparatus, multiple observers and inter-frame physics. QDN is most naturally expressed in the mathematical language of quantum computation, a language ideally suited to describe quantum experiments as processes of information exchange between observers and their apparatus. Examples in quantum optics are given, showing how the formalism deals with quantum interference, non-locality and entanglement. Particle decays, relativity and non-linearity in quantum mechanics are discussed.Comment: 59 pages, 14 figures, to be published in Int. J. Mod. Phys.
    corecore