83 research outputs found

    f(R) as a dark energy fluid

    Full text link
    We study the equations for the evolution of cosmological perturbations in f(R)f\left(\mathcal{R}\right) and conclude that this modified gravity model can be expressed as a dark energy fluid at background and linearised perturbation order. By eliminating the extra scalar degree of freedom known to be present in such theories, we are able to characterise the evolution of the perturbations in the scalar sector in terms of equations of state for the entropy perturbation and anisotropic stress which are written in terms of the density and velocity perturbations of the dark energy fluid and those in the matter, or the metric perturbations. We also do the same in the much simpler vector and tensor sectors. In order to illustrate the simplicity of this formulation, we numerically evolve perturbations in a small number of cases.Comment: 12 pages, 5 figure

    Comparison of primordial tensor power spectra from the deformed algebra and dressed metric approaches in loop quantum cosmology

    Full text link
    Loop quantum cosmology tries to capture the main ideas of loop quantum gravity and to apply them to the Universe as a whole. Two main approaches within this framework have been considered to date for the study of cosmological perturbations: the dressed metric approach and the deformed algebra approach. They both have advantages and drawbacks. In this article, we accurately compare their predictions. In particular, we compute the associated primordial tensor power spectra. We show -- numerically and analytically -- that the large scale behavior is similar for both approaches and compatible with the usual prediction of general relativity. The small scale behavior is, the other way round, drastically different. Most importantly, we show that in a range of wavenumbers explicitly calculated, both approaches do agree on predictions that, in addition, differ from standard general relativity and do not depend on unknown parameters. These features of the power spectrum at intermediate scales might constitute a universal loop quantum cosmology prediction that can hopefully lead to observational tests and constraints. We also present a complete analytical study of the background evolution for the bouncing universe that can be used for other purposes.Comment: 15 pages, 7 figure

    Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations

    Full text link
    We summarize recent significant progress in the development of a first-principles formalism to describe the formation and evolution of matter in very high energy heavy ion collisions. The key role of quantum fluctuations both before and after a collision is emphasized. Systematic computations are now feasible to address early time dynamics essential to quantifying properties of strongly interacting quark-gluon matter.Comment: Talk by R.V. at Quark Matter 2011, Annecy, France, May 23-28, 2011. LaTex, 4 pages; v2, final version to appear in J. Phys.

    class_sz I: Overview

    Full text link
    class_sz is a versatile and robust code in C and Python that can compute theoretical predictions for a wide range of observables relevant to cross-survey science in the Stage IV era. The code is public at https://github.com/CLASS-SZ/class_sz along with a series of tutorial notebooks (https://github.com/CLASS-SZ/notebooks). It will be presented in full detail in paper II. Here we give a brief overview of key features and usage.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    The Rise and Fall of the Ridge in Heavy Ion Collisions

    Full text link
    Recent data from heavy ion collisions at RHIC show unexpectedly large near-angle correlations that broaden longitudinally with increasing centrality. The amplitude of this ridge-like correlation rises rapidly, reaches a maximum, and then falls in the most central collisions. In this letter we explain how this behavior can be explained as initial-state coordinate-space anisotropies converted into final-state momentum-space correlations. We propose vn2/ϔn,part2v_n^2/\epsilon_{n,\mathrm{part}}^{2} as a useful way to study length scales and provide a prediction for the ridge in Pb+Pb collisions at sNN=\sqrt{s_{\mathrm{NN}}}= 2.76 TeV.Comment: 1 Figure and text adde

    Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics

    Get PDF
    Following the pioneering observations with COBE in the early 1990s, studies of the cosmic microwave background (CMB) have focused on temperature and polarization anisotropies. CMB spectral distortions - tiny departures of the CMB energy spectrum from that of a perfect blackbody - provide a second, independent probe of fundamental physics, with a reach deep into the primordial Universe. The theoretical foundation of spectral distortions has seen major advances in recent years, which highlight the immense potential of this emerging field. Spectral distortions probe a fundamental property of the Universe - its thermal history - thereby providing additional insight into processes within the cosmological standard model (CSM) as well as new physics beyond. Spectral distortions are an important tool for understanding inflation and the nature of dark matter. They shed new light on the physics of recombination and reionization, both prominent stages in the evolution of our Universe, and furnish critical information on baryonic feedback processes, in addition to probing primordial correlation functions at scales inaccessible to other tracers. In principle the range of signals is vast: many orders of magnitude of discovery space could be explored by detailed observations of the CMB energy spectrum. Several CSM signals are predicted and provide clear experimental targets, some of which are already observable with present-day technology. Confirmation of these signals would extend the reach of the CSM by orders of magnitude in physical scale as the Universe evolves from the initial stages to its present form. The absence of these signals would pose a huge theoretical challenge, immediately pointing to new physics.Comment: Astro2020 Science White Paper, 5 pages text, 13 pages in total, 3 Figures, minor update to reference

    Higher Flow Harmonics in Heavy Ion Collisions from STAR

    Full text link
    We report STAR measurements relating to higher flow harmonics including the centrality dependence of two- and four-particle cumulants for harmonics 1 to 6. Two-particle correlation functions vs. \Delta\eta and \Delta\phi are presented for pT and number correlations. We find the power spectra (Fourier Transforms of the correlation functions) for central collisions drop quickly for higher harmonics. The \Delta\eta dependence of v3{2}2 and the pT and centrality dependence of v2 and v3 are studied. Trends are conistent with expectations from models including hot-spots in the initial energy density and an expansion phase. We also present v3 and v2{2}2 - v2{4}2 vs. \surdsNN .Comment: 8 pages. Conference proceedings for Quark Matter 201

    Ontogeny of central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui

    Full text link
    Embryonic development of the central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui , was determined by using immunocytochemistry. The majority of anuran amphibians (frogs) possess a larval stage (tadpole) that undergoes metamorphosis, a dramatic post-embryonic event, whereby the tadpole transforms into the adult phenotype. Directly developing frogs have evolved a derived life-history mode where the tadpole stage has been deleted and embryos develop directly into the adult bauplan. Embryonic development in E. coqui is classified into 15 stages (TS 1–15; 1 = oviposition / 15 = hatching). Serotonergic immunoreactivity was initially detected at TS 6 in the raphe nuclei in the developing rhombencephalon. At TS 7, immunopositive perikarya were observed in the paraventricular organ in the hypothalamus and reticular nuclei in the hindbrain. Development of the serotonergic system was steady and gradual during mid-embryogenesis. However, starting at TS 13 there was a substantial increase in the number of serotonergic neurons in the paraventricular, raphe, and reticular nuclei, a large increase in the number of varicose fibers, and a differentiation of the reticular nuclei in the hindbrain. Consequentially, E. coqui displayed a well-developed central serotonergic system prior to hatching (TS 15). In comparison, the serotonergic system in metamorphic frogs typically starts to develop earlier but the surge of development that transpires in this system occurs post-embryonically, during metamorphosis, and not in the latter stages of embryogenesis, as it does in E. coqui . Overall, the serotonergic development in E. coqui is similar to the other vertebrates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47526/1/429_2005_Article_22.pd

    The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth

    Full text link
    We present new measurements of cosmic microwave background (CMB) lensing over 94009400 sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3%2.3\% precision (43σ43\sigma significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of Alens=1.013±0.023A_{\mathrm{lens}}=1.013\pm0.023 relative to the Planck 2018 CMB power spectra best-fit Λ\LambdaCDM model and Alens=1.005±0.023A_{\mathrm{lens}}=1.005\pm0.023 relative to the ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBLâ‰ĄÏƒ8(Ωm/0.3)0.25S^{\mathrm{CMBL}}_8 \equiv \sigma_8 \left({\Omega_m}/{0.3}\right)^{0.25} of S8CMBL=0.818±0.022S^{\mathrm{CMBL}}_8= 0.818\pm0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018S^{\mathrm{CMBL}}_8= 0.813\pm0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with Λ\LambdaCDM model constraints from Planck or ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} CMB power spectrum measurements. Our lensing measurements from redshifts z∌0.5z\sim0.5--55 are thus fully consistent with Λ\LambdaCDM structure growth predictions based on CMB anisotropies probing primarily z∌1100z\sim1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see companion papers Madhavacheril et al and MacCrann et a

    The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky

    Full text link
    Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-yy distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-yy map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made publi
    • 

    corecore