506 research outputs found

    The rat's anticipation of diurnal and a-diurnal feeding

    Get PDF
    Rats anticipation of diurnal and a-diurnal feedin

    Evaluating Landscape Degradation Along Climatic Gradients During the 1930s Dust Bowl Drought From Panchromatic Historical Aerial Photographs, United States Great Plains

    Get PDF
    The United States Great Plains (USGP) are some of the most productive rangelands globally and a significant carbon sink for the atmosphere, but grassland response to precipitation is highly variable and poorly constrained over time and space. There is a rich historical aerial photographic record of the USGP which provides an unparalleled view of past landscapes and allows for evaluation of surficial response to drought beyond the satellite record, such as during the 1930s Dust Bowl Drought (DBD). This study classified the extent and loci of surficial denudation from seamless mosaics of radiometrically corrected and georectified digitized aerial negatives acquired in the late 1930s from six counties distributed across USGP ecoregions. The dominant sources of degradation found for sites east of the 100th meridian are cultivated fields and fluvial deposits, associated with woody vegetation response to water availability in uncultivated areas. For sites to the west, denuded surfaces are predominantly eolian sandsheets and dunes, correlated with intensity of drought conditions and reduced plant diversity. Discrete spatial signatures of the drought are observed not only within the classically recognized southern Dust Bowl area, but also in the northern and central plains. Statistical analyses of site variability suggest landscape response to the DBD is most strongly influenced by the arid–humid divide and severity of precipitation and temperature anomalies. With a projected increase 21st century aridity, eolian processes cascading across western grasslands, like during the Dust Bowl, may significantly impact future dust particle emission and land and carbon storage management

    Are upright lateral cervical radiographs in the obtunded trauma patient useful? A retrospective study

    Get PDF
    BACKGROUND: The best method for radiographic "clearance" of the cervical spine in obtunded patients prior to removal of cervical immobilization devices remains debated. Dynamic radiographs or MRI are thought to demonstrate unstable injuries, but can be expensive and cumbersome to obtain. An upright lateral cervical radiograph (ULCR) was performed in selected patients to investigate whether this study could provide this same information, to enable removal of cervical immobilization devices in the multiple trauma patient. METHODS: We retrospectively reviewed our experience with ULCR in 683 blunt trauma victims who presented over a 3-year period, with either a Glasgow Coma Score <13 or who were intubated at the time of presentation. RESULTS: ULCR was performed in 163 patients. Seven patients had studies interpreted to be abnormal, of which six were also abnormal, by either CT or MRI. The seventh patient's only abnormality was soft tissue swelling; MRI was otherwise normal. Six patients had ULCR interpreted as normal, but had abnormalities on either CT or MRI. None of the missed injuries required surgical stabilization, although one had a vertebral artery injury demonstrated on subsequent angiography. ULCR had an apparent sensitivity of 45.5% and specificity of 71.4%. CONCLUSION: ULCR are inferior to both CT and MRI in the detection of cervical injury in patients with normal plain radiographs. We therefore cannot recommend the use of ULCR in the obtunded trauma patient

    A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease

    Get PDF
    Live-attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3′-5′ exonuclease activity (ExoN) that likely functions in RNA proofreading. In this study, we demonstrate that engineered inactivation of SARS-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged, and immunocompromised mouse models of human SARS. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. Our approach represents a strategy with potential for broad applications for the stable attenuation of coronaviruses and possibly other RNA viruses

    Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury

    Get PDF
    ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV.IMPORTANCESevere acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and 2003, and infected patients developed an atypical pneumonia, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) leading to pulmonary fibrosis and death. We identified sets of differentially expressed genes that contribute to ALI and ARDS using lethal and sublethal SARS-CoV infection models. Mathematical prioritization of our gene sets identified the urokinase and extracellular matrix remodeling pathways as the most enriched pathways. By infecting Serpine1-knockout mice, we showed that the urokinase pathway had a significant effect on both lung pathology and overall SARS-CoV pathogenesis. These results demonstrate the effective use of unbiased modeling techniques for identification of high-priority host targets that regulate disease outcomes. Similar transcriptional signatures were noted in 1918 and 2009 H1N1 influenza virus-infected mice, suggesting a common, potentially treatable mechanism in development of virus-induced ALI

    Aversive Learning in Honeybees Revealed by the Olfactory Conditioning of the Sting Extension Reflex

    Get PDF
    Invertebrates have contributed greatly to our understanding of associative learning because they allow learning protocols to be combined with experimental access to the nervous system. The honeybee Apis mellifera constitutes a standard model for the study of appetitive learning and memory since it was shown, almost a century ago, that bees learn to associate different sensory cues with a reward of sugar solution. However, up to now, no study has explored aversive learning in bees in such a way that simultaneous access to its neural bases is granted. Using odorants paired with electric shocks, we conditioned the sting extension reflex, which is exhibited by harnessed bees when subjected to a noxious stimulation. We show that this response can be conditioned so that bees learn to extend their sting in response to the odorant previously punished. Bees also learn to extend the proboscis to one odorant paired with sugar solution and the sting to a different odorant paired with electric shock, thus showing that they can master both appetitive and aversive associations simultaneously. Responding to the appropriate odorant with the appropriate response is possible because two different biogenic amines, octopamine and dopamine subserve appetitive and aversive reinforcement, respectively. While octopamine has been previously shown to substitute for appetitive reinforcement, we demonstrate that blocking of dopaminergic, but not octopaminergic, receptors suppresses aversive learning. Therefore, aversive learning in honeybees can now be accessed both at the behavioral and neural levels, thus opening new research avenues for understanding basic mechanisms of learning and memory

    Bonsai Trees in Your Head: How the Pavlovian System Sculpts Goal-Directed Choices by Pruning Decision Trees

    Get PDF
    When planning a series of actions, it is usually infeasible to consider all potential future sequences; instead, one must prune the decision tree. Provably optimal pruning is, however, still computationally ruinous and the specific approximations humans employ remain unknown. We designed a new sequential reinforcement-based task and showed that human subjects adopted a simple pruning strategy: during mental evaluation of a sequence of choices, they curtailed any further evaluation of a sequence as soon as they encountered a large loss. This pruning strategy was Pavlovian: it was reflexively evoked by large losses and persisted even when overwhelmingly counterproductive. It was also evident above and beyond loss aversion. We found that the tendency towards Pavlovian pruning was selectively predicted by the degree to which subjects exhibited sub-clinical mood disturbance, in accordance with theories that ascribe Pavlovian behavioural inhibition, via serotonin, a role in mood disorders. We conclude that Pavlovian behavioural inhibition shapes highly flexible, goal-directed choices in a manner that may be important for theories of decision-making in mood disorders
    corecore