2,416 research outputs found

    X-ray variability and spectral scaling: a measure of BLR sizes in AGN

    Get PDF
    We apply a new method of determination of the size of the broad emission-line region (BLR) in active galactic nuclei. This method relates the radius of the broad-line region of AGN to the soft X-ray luminosity and spectral index. Comparing the BLR distances calculated from our photoionization scaling model to the BLR distances determined by reverberation mapping shows that the scaling law agrees with the RL1/2R\sim L^{1/2} empirical relation. We investigate a complimentary method of estimating the BLR distance - based on the Keplerian broadening of the emission lines and the central mass estimated from X-ray variability.Comment: 4 page latex file, 2 figs. Complete uuencoded compressed PS file is also available at ftp://saba.fiz.huji.ac.il/~pub/wandel/blrx_ts.uu or at http://shum.cc.huji.ac.il/~amri/papers/blrx_ts(tex,ps) to appear in Proc. of Astronomical Time Serie

    ROSAT All-Sky Survey observations of IRAS galaxies; I. Soft X-ray and far-infrared properties

    Get PDF
    The 120,000 X-ray sources detected in the RASS II processing of the ROSAT All-Sky Survey are correlated with the 14,315 IRAS galaxies selected from the IRAS Point Source Catalogue: 372 IRAS galaxies show X-ray emission within a distance of 100 arcsec from the infrared position. By inspecting the structure of the X-ray emission in overlays on optical images we quantify the likelihood that the X-rays originate from the IRAS galaxy. For 197 objects the soft X-ray emission is very likely associated with the IRAS galaxy. Their soft X-ray properties are determined and compared with their far-infrared emission. X-ray contour plots overlaid on Palomar Digitized Sky Survey images are given for each of the 372 potential identifications. All images and tables displayed here are also available in electronic form.Comment: accepted for publication in A&AS, complete version including all figures and tables available at http://www.rosat.mpe-garching.mpg.de/~bol/iras_rassI

    A direct view of the AGN powering IRAS12393+3520

    Get PDF
    We report the first direct X-ray evidence that an AGN is hidden in the center of IRAS12393+3520. An ASCA observation of this target unveiled a bright (0.5-10 keV luminosity 3.9 x 10^42 erg/s) and variable source, with minimum observed doubling/halving time scale comprised in the range 30-75 ks. A model composed by a simple power-law, with photon index ~1.8 and an absorption edge, whose threshold energy is consistent with K-shell photoionization of OVII, provides an adequate fit of the spectrum. This suggests that we are observing the emission from the nuclear region through a warm absorber of N_H a few 10^{21}/cm/cm. If it has internal dust with Galactic gas-to-dust ratio, it could explain the lack of broad Hbeta emission, even in the episodic presence of a broad Halpha emission line. Optical spectra obtained over several years show indeed variations in the strength of this broad Halpha component. A distribution of dusty, optically thick matter on spatial scales a few hundreds parsec, which does not intercept the line of sight towards the nucleus, is probably required to account simultaneously for the relative [OIII] luminosity deficit in comparison to the X-rays. The high IR to X-ray luminosity ratio is most likely due to intense star formation in the circumnuclear region. IRAS12393+3520 might thus exhibit simultaneously nuclear activity and remarkable star formation.Comment: 9 Latex pages, 8 figures, Accepted for publication in Astronomy & Astrophysic

    1ES 1927+654: Persistent and rapid X-ray variability in an AGN with low intrinsic neutral X-ray absorption and narrow optical emission lines

    Full text link
    We present X-ray and optical observations of the X-ray bright AGN 1ES 1927+654. The X-ray observations obtained with ROSAT and Chandra reveal persistent, rapid and large scale variations, as well as steep 0.1-2.4 keV (Gamma = 2.6 +/- 0.3) and 0.3-7.0 keV (Gamma = 2.7 +/- 0.2) spectra. The measured intrinsic neutral X-ray column density is approximately 7e20cm^-2. The X-ray timing properties indicate that the strong variations originate from a region, a few hundred light seconds from the central black hole, typical for type 1 AGN. High quality optical spectroscopy reveals a typical Seyfert 2 spectrum with some host galaxy contamination and no evidence of Fe II multiplets or broad hydrogen Balmer wings. The intrinsic optical extinction derived from the BLR and NLR are A_V >= 3.7 and A_V=1.7, respectively. The X-ray observations give an A_V value of less than 0.58, in contrast to the optical extinction values. We discuss several ideas to explain this apparent difference in classification including partial covering, an underluminous BLR or a high dust to gas ratio.Comment: 8 pages including 10 figures. Accepted for publication in Astronomy and Astrophysic

    AHMS 220.50: Medical Office Procedures

    Get PDF

    CAPP 154.01: Microsoft Word

    Get PDF

    AHMS 298.01: Medical Info Internship

    Get PDF

    AHMS 108.50: Health Data Content and Structure

    Get PDF
    corecore