843 research outputs found

    Endometrial Carcinoma: A Review of Chemotherapy, Drug Resistance, and the Search for New Agents

    Get PDF
    The article examines current treatment options in patients with endometrial carcinoma, the role of drug resistance, and the rationale for the use of epothilones in treating this disease

    Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry

    Get PDF
    Ixabepilone (BMS-247550) is a semi-synthetic, microtubule stabilizing epothilone B analogue which is more potent than taxanes and has displayed activity in taxane-resistant patients. The human plasma pharmacokinetics of ixabepilone have been described. However, the excretory pathways and contribution of metabolism to ixabepilone elimination have not been determined. To investigate the elimination pathways of ixabepilone we initiated a mass balance study in cancer patients. Due to autoradiolysis, ixabepilone proved to be very unstable when labeled with conventional [14C]-levels (100 μCi in a typical human radio-tracer study). This necessitated the use of much lower levels of [14C]-labeling and an ultra-sensitive detection method, Accelerator Mass Spectrometry (AMS). Eight patients with advanced cancer (3 males, 5 females; median age 54.5 y; performance status 0–2) received an intravenous dose of 70 mg, 80 nCi of [14C]ixabepilone over 3 h. Plasma, urine and faeces were collected up to 7 days after administration and total radioactivity (TRA) was determined using AMS. Ixabepilone in plasma and urine was quantitated using a validated LC-MS/MS method. Mean recovery of ixabepilone-derived radioactivity was 77.3% of dose. Fecal excretion was 52.2% and urinary excretion was 25.1%. Only a minor part of TRA is accounted for by unchanged ixabepilone in both plasma and urine, which indicates that metabolism is a major elimination mechanism for this drug. Future studies should focus on structural elucidation of ixabepilone metabolites and characterization of their activities

    c-Fos induction by gut hormones and extracellular ATP in osteoblastic-like cell lines

    Get PDF
    It is widely accepted that the c-Fos gene has a role in proliferation and differentiation of bone cells. ATP-induced c-Fos activation is relevant to bone homeostasis, because nucleotides that are present in the environment of bone cells can contribute to autocrine/paracrine signalling. Gut hormones have previously been shown to have an effect on bone metabolism. In this study, we used the osteoblastic Saos-2 cell line transfected with a c-Fos-driven reporter stimulated with five gut hormones: glucose inhibitory peptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), ghrelin and obestatin, in the presence or absence of ATP. In addition, TE-85 cells were used to determine the time course of c-Fos transcript induction following stimulation with GLP-1, and GLP-2 with or without ATP, using reverse transcription qPCR. The significant results from the experiments are as follows: higher level of c-Fos induction in presence of GIP, obestatin (p = 0.019 and p = 0.011 respectively), and GIP combined with ATP (p < 0.001) using the luciferase assay; GLP-1 and GLP-2 combined with ATP (p = 0.034 and p = 0.002, respectively) and GLP-2 alone (p < 0.001) using qPCR. In conclusion, three of the gut peptides induced c-Fos, providing a potential mechanism underlying the actions of these hormones in bone which can be directed or enhanced by the presence of ATP

    Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells

    Get PDF
    Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis

    A Natural Love of Natural Products

    Get PDF
    Recent research on the chemistry of natural products from the author’s group that led to the receipt of the ACS Ernest Guenther Award in the Chemistry of Natural Products is reviewed. REDOR NMR and synthetic studies established the T-taxol conformation as the bioactive tubulin-binding conformation, and these results were confirmed by the synthesis of compounds which clearly owed their activity or lack of activity to whether or not they could adopt the T-taxol conformation. Similar studies with the epothilones suggest that the current tubulin-binding model needs to be modified. Examples of natural products discovery and biodiversity conservation in Suriname and Madagascar are also presented, and it is concluded that natural products chemistry will continue to make significant contributions to drug discovery. My first real exposure to natural products chemistry came in my third and final year as an undergraduate at Cambridge University, when I attended a course of lectures on the chemistry of natural products by the Nobel Prize-winning chemist Sir Alexander Todd (later to become Lord Todd). The lectures included many references to his own work in the field, with stories of his early work on the structure of cholesterol, th

    Vitamin A Enhances Antitumor Effect of a Green Tea Polyphenol on Melanoma by Upregulating the Polyphenol Sensing Molecule 67-kDa Laminin Receptor

    Get PDF
    BACKGROUND: Green tea consumption has been shown to have cancer preventive qualities. Among the constituents of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG) is the most effective at inhibiting carcinogenesis. However, the concentrations of EGCG that are required to elicit the anticancer effects in a variety of cancer cell types are much higher than the peak plasma concentration that occurs after drinking an equivalent of 2-3 cups of green tea. To obtain the anticancer effects of EGCG when consumed at a reasonable concentration in daily life, we investigated the combination effect of EGCG and food ingredient that may enhance the anticancer activity of EGCG on subcutaneous tumor growth in C57BL/6N mice challenged with B16 melanoma cells. METHODOLOGY/PRINCIPAL FINDINGS: All-trans-retinoic acid (ATRA) enhanced the expression of the 67-kDa laminin receptor (67LR) and increased EGCG-induced cell growth inhibition in B16 melanoma cells. The cell growth inhibition seen with the combined EGCG and ATRA treatment was abolished by treatment with an anti-67LR antibody. In addition, the combined EGCG and ATRA treatment significantly suppressed the melanoma tumor growth in mice. Expression of 67LR in the tumor increased upon oral administration of ATRA or a combined treatment of EGCG and ATRA treatment. Furthermore, RNAi-mediated silencing of the retinoic acid receptor (RAR) alpha attenuated the ATRA-induced enhancement of 67LR expression in the melanoma cells. An RAR agonist enhanced the expression levels of 67LR and increased EGCG-induced cell growth inhibition. CONCLUSIONS/SIGNIFICANCE: Our findings provide a molecular basis for the combination effect seen with dietary components, and indicate that ATRA may be a beneficial food component for cancer prevention when combined with EGCG
    corecore