900 research outputs found

    Photoactivatable prodrugs of antimelanoma agent Vemurafenib

    Get PDF
    In this study, we report on novel photoactivatable caged prodrugs of vemurafenib. This kinase inhibitor was the first approved drug for the personalized treatment of BRAF-mutated melanoma and showed impressive results in clinical studies. However, the occurrence of severe side effects and drug resistance illustrates the urgent need for innovative therapeutic approaches. To conquer these limitations, we implemented photoremovable protecting groups into vemurafenib. In general, this caging concept provides spatial and temporal control over the activation of molecules triggered by ultraviolet light. Thus, higher inhibitor concentrations in tumor tissues might be reached with less systemic effects. Our study describes the first development of caged vemurafenib prodrugs useful as pharmacological tools. We investigated their photochemical characteristics and photoactivation. <i>In vitro</i> evaluation proved the intended loss-of-function and the light-dependent recovery of efficacy in kinase and cellular assays. The reported vemurafenib photo prodrugs represent a powerful biological tool for novel pharmacological approaches in cancer research

    Novel therapeutic approach: organic arsenical (melarsoprol) alone or with all-trans -retinoic acid markedly inhibit growth of human breast and prostate cancer cells in vitro and in vivo

    Get PDF
    The organic arsenical known as melarsoprol (Mel-B) is used to treat African trypanosomiasis. Recently, another arsenical, As2O3was shown to be effective in treatment of acute promyelocytic leukaemia. We have investigated the anti-tumour activities of Mel-B either with or without all-trans -retinoic acid (ATRA) using the MCF-7 human breast cancer cells, as well as the PC-3 and DU 145 human prostate cancer cells both in vitro and in vivo. The antiproliferative effects of Mel-B and/or ATRA against breast and prostate cancer were tested in vitro using clonogenic assays and in vivo in triple immunodeficient mice. Furthermore, the mechanism of action of these compounds was studied by examining the cell cycle, levels of bcl-2, apoptosis and antiproliferative potency using a pulse-exposure assay. Clonogenic assays showed that the cancer cell lines were sensitive to the inhibitory effect of Mel-B (effective dose that inhibited 50% clonal growth [ED50]: 7 × 10−9M for MCF-7, 2 × 10−7M for PC-3, 3 × 10−7M for DU145 cells. Remarkably, the combination of Mel-B and ATRA had an enhanced antiproliferative activity against all three cancer cell lines. Furthermore, the combination of Mel-B and ATRA induced a high level of apoptosis in all three cell lines. Treatment of PC-3 and MCF-7 tumours growing in triple immunodeficient mice with Mel-B and ATRA either alone or in combination markedly retarded tumour size and weight of the tumours without major side-effects. In conclusion, our results suggest that either Mel-B alone or with ATRA may be a useful, novel therapy for breast and prostate cancers. © 2000 Cancer Research Campaig

    JC Virus Small t Antigen Binds Phosphatase PP2A and Rb Family Proteins and Is Required for Efficient Viral DNA Replication Activity

    Get PDF
    BACKGROUND: The human polyomavirus, JC virus (JCV) produces five tumor proteins encoded by transcripts alternatively spliced from one precursor messenger RNA. Significant attention has been given to replication and transforming activities of JCV's large tumor antigen (TAg) and three T' proteins, but little is known about small tumor antigen (tAg) functions. Amino-terminal sequences of tAg overlap with those of the other tumor proteins, but the carboxy half of tAg is unique. These latter sequences are the least conserved among the early coding regions of primate polyomaviruses. METHODOLOGY AND FINDINGS: We investigated the ability of wild type and mutant forms of JCV tAg to interact with cellular proteins involved in regulating cell proliferation and survival. The JCV P99A tAg is mutated at a conserved proline, which in the SV40 tAg is required for efficient interaction with protein phosphatase 2A (PP2A), and the C157A mutant tAg is altered at one of two newly recognized LxCxE motifs. Relative to wild type and C157A tAgs, P99A tAg interacts inefficiently with PP2A in vivo. Unlike SV40 tAg, JCV tAg binds to the Rb family of tumor suppressor proteins. Viral DNAs expressing mutant t proteins replicated less efficiently than did the intact JCV genome. A JCV construct incapable of expressing tAg was replication-incompetent, a defect not complemented in trans using a tAg-expressing vector. CONCLUSIONS: JCV tAg possesses unique properties among the polyomavirus small t proteins. It contributes significantly to viral DNA replication in vivo; a tAg null mutant failed to display detectable DNA replication activity, and a tAg substitution mutant, reduced in PP2A binding, was replication-defective. Our observation that JCV tAg binds Rb proteins, indicates all five JCV tumor proteins have the potential to influence cell cycle progression in infected and transformed cells. It remains unclear how these proteins coordinate their unique and overlapping functions

    Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry

    Get PDF
    Ixabepilone (BMS-247550) is a semi-synthetic, microtubule stabilizing epothilone B analogue which is more potent than taxanes and has displayed activity in taxane-resistant patients. The human plasma pharmacokinetics of ixabepilone have been described. However, the excretory pathways and contribution of metabolism to ixabepilone elimination have not been determined. To investigate the elimination pathways of ixabepilone we initiated a mass balance study in cancer patients. Due to autoradiolysis, ixabepilone proved to be very unstable when labeled with conventional [14C]-levels (100 μCi in a typical human radio-tracer study). This necessitated the use of much lower levels of [14C]-labeling and an ultra-sensitive detection method, Accelerator Mass Spectrometry (AMS). Eight patients with advanced cancer (3 males, 5 females; median age 54.5 y; performance status 0–2) received an intravenous dose of 70 mg, 80 nCi of [14C]ixabepilone over 3 h. Plasma, urine and faeces were collected up to 7 days after administration and total radioactivity (TRA) was determined using AMS. Ixabepilone in plasma and urine was quantitated using a validated LC-MS/MS method. Mean recovery of ixabepilone-derived radioactivity was 77.3% of dose. Fecal excretion was 52.2% and urinary excretion was 25.1%. Only a minor part of TRA is accounted for by unchanged ixabepilone in both plasma and urine, which indicates that metabolism is a major elimination mechanism for this drug. Future studies should focus on structural elucidation of ixabepilone metabolites and characterization of their activities

    Functional expression of NF1 tumor suppressor protein: association with keratin intermediate filaments during the early development of human epidermis

    Get PDF
    BACKGROUND: NF1 refers to type 1 neurofibromatosis syndrome, which has been linked with mutations of the large NF1 gene. NF1 tumor suppressor protein, neurofibromin, has been shown to regulate ras: the NF1 protein contains a GTPase activating protein (GAP) related domain which functions as p21rasGAP. Our studies have previously demonstrated that the NF1 protein forms a high affinity association with cytokeratin 14 during the formation of desmosomes and hemidesmosomes in cultured keratinocytes. METHODS: The expression of NF1 protein was studied in developing human epidermis using western transfer analysis, indirect immunofluorescence, confocal laser scanning microscopy, immunoelectron microscopy, and in situ hybridization. RESULTS: The expression of NF1 protein was noted to be highly elevated in the periderm at 8 weeks estimated gestational age (EGA) and in the basal cells at 8–14 weeks EGA. During this period, NF1 protein was associated with cytokeratin filaments terminating to desmosomes and hemidesmosomes. NF1 protein did not display colocalization with α-tubulin or actin of the cytoskeleton, or with adherens junction proteins. CONCLUSIONS: These results depict an early fetal period when the NF1 tumor suppressor is abundantly expressed in epidermis and associated with cytokeratin filaments. This period is characterized by the initiation of differentiation of the basal cells, maturation of the basement membrane zone as well as accentuated formation of selected cellular junctions. NF1 tumor suppressor may function in the regulation of epidermal histogenesis via controlling the organization of the keratin cytoskeleton during the assembly of desmosomes and hemidesmosomes

    Synergistic inhibition of prostate cancer cell lines by a 19- nor hexafluoride vitamin D3 analogue and anti-activator protein 1 retinoid

    Get PDF
    The secosteroid hormones, all- trans- and 9- cis -retinoic acid and vitamin D3, have demonstrated significant capacity to control proliferation in itro of many solid tumour cell lines. Cooperative synergistic effects by these two ligands have been reported, and it is, therefore, possible that greater therapeutic effects could be achieved if these compounds were administered together. The role of retinoid-dependent anti-activator protein 1 (anti-AP-1) effects in controlling cancer cell proliferation appears significant. We have utilized an anti- AP-1 retinoid [2-(4,4-dimethyl-3,4-dihydro-2H-1 benzopyran-6-yl)carbonyl-2-(4-carboxyphenyl)-1,3,-dithiane; SR11238], which does not transactivate through a retinoic acid response element (RARE), and a potent vitamin D3analogue [1α,25(OH)2-16-ene-23-yne-26,27-F6-19-nor -D3, code name LH] together at low, physiologically safer doses against a panel of prostate cancer cell lines that represent progressively more transformed phenotypes. The LNCaP (least transformed) and PC-3 (intermediately transformed) cell lines were synergistically inhibited in their clonal growth by the combination of LH and SR11238, whereas SR11238 alone was essentially inactive. DU-145 cells (most transformed) were completely insensitive to these analogues. LNCaP cells, but neither PC-3 nor DU-145, underwent apoptosis in the presence of LH and SR11238. Transactivation of the human osteocalcin vitamin D response element (VDRE) by LH was not enhanced in the presence of SR11238, although the expression of E-cadherin in these cells was additively up-regulated in the presence of both compounds. These data suggest the anti-AP-1 retinoid and the vitamin D3 analogue may naturally act synergistically to control cell proliferation, a process that is interrupted during transformation, and that this combination may form the basis for treatment of some androgen-independent prostate cancer. © 1999 Cancer Research Campaig
    • …
    corecore