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Abstract
Purpose Explore the heterogeneity in dynamics of tumour response to vemurafenib, dabrafenib and trametinib using routinely 
collected clinical trial imaging data.
Methods Time-series imaging data from the phase III studies of vemurafenib, dabrafenib and trametinib were collected 
through a data repository. A mathematical model based on basic mechanisms of tumour growth was placed within a statisti-
cal modelling framework to analyse the data.
Results The analysis revealed: (1) existence of homogeneity in drug response and resistance development within a patient; 
(2) tumour shrinkage rate does not relate to rate of resistance development; (3) vemurafenib and dabrafenib, two BRAF 
inhibitors, have different variability in tumour shrinkage rates.
Conclusions Overall these results show how analysis of the dynamics of individual lesions can shed light on the within and 
between patient differences in tumour shrinkage and resistance rates, which could be used to gain a macroscopic understand-
ing of tumour heterogeneity.

Keywords Heterogeneity · Imaging · Melanoma · Pharmacology

Introduction

Tumour heterogeneity at the molecular level is known to 
exist not only between patients but also between lesions 
within a patient and within an individual lesion [1–3]. At 
the individual lesion level, we can envisage that the molecu-
lar heterogeneity is likely to lead to differential cell kill-
ing, under a given treatment, within the lesion [4]. The 

differential killing is likely to vary across lesions within 
a patient and also across patients. This variability in cell 
killing could well be visible at the whole tumour level via 
measurements obtained through routine clinical imaging. 
Data from clinical trials are likely to be the best source for 
exploring the variability described as the imaging data col-
lection process is standardised for a large number of patients. 
This is due to most clinical trials employing the Response 
Evaluation Criteria In Solid Tumours (RECIST) [5]. This 
criterion, however, limits the analysis of variability to the 
between patient and within patient level, as we now explain.

In most cancers, the response of a tumour to treatment is 
predominantly measured through quantifying images taken of 
it over time. A standardised methodology to quantify patient 
response to a treatment that is routinely applied in clinical 
trials is RECIST. The criterion involves taking information at 
the individual lesion level and combining it to produce a single 
value, response category, at each imaging visit for a patient in 
the following way. The tumours within a patient are first clas-
sified as either target or non-target lesions based on whether 
a lesion is repeatedly measurable or not. Target lesions are 
then recorded quantitatively by taking the longest diameter 
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of each of them and summing them together to produce the 
sum of longest diameters (SLD) value at each imaging visit. 
Non-target lesions are not recorded quantitatively but are 
recorded qualitatively by assessing whether they have disap-
peared, still visible/partially shrunk but not grown or experi-
enced unequivocal growth. The information on target lesions, 
non-target lesions and whether a new lesion has occurred is 
combined, such that at each visit the patient is placed into 
one of the following four categories: complete response (CR), 
partial response (PR), stable disease (SD) or progressive dis-
ease (PD). This categorisation scheme is further simplified by 
combining CR and PR to create the objective response rate 
(ORR). Once a patient enters the PD category or the patient 
dies, all imaging stops. This brief introduction to the RECIST 
criteria clearly highlights that quantitative information at the 
individual lesion level, through measurement of the target 
lesions, is available. It is this information that can be lever-
aged to explore quantitatively the dynamics of response and 
resistance of tumours at both the between patient and within 
patient level.

The goal of this study is to explore the variability in the 
dynamics of the time-series of these target lesions under treat-
ment. This will be done by placing a mathematical model of 
tumour growth within a statistical framework used routinely 
for population analysis. The model and statistical framework 
will allow us to explore the following three biological ques-
tions: (1) is there a degree of correlation in the dynamics of 
tumour size within a patient; (2) if so what is the difference 
in-between and within patient variability in tumour shrinkage 
and resistance rates; (3) is there a correlation between tumour 
shrinkage and resistance rates at either the individual lesion 
level or patient level. The framework described in this study 
is applied to three treatments currently used within the meta-
static melanoma setting, vemurafenib (BRAF/CRAF inhibitor) 
[6, 7], dabrafenib (BRAF inhibitor) [8] and trametinib (MEK 
inhibitor) [9]. These compounds were chosen as the pathway 
under target is the same, and all three are used within the same 
patient population [10].

Materials and methods

Patients

Data from the vemurafenib [11], dabrafenib [12] and 
trametinib [13] arms of their corresponding phase III stud-
ies was collected through clinicalstudydatarequest.com. For 
full details of the studies and patient demographics, we refer 
the reader to the previous three articles, which published the 
results of the phase III studies. Only patients who had a SD, 
PR or CR response at the first visit were taken forward for the 
model-based analysis, as our interest is in the response to the 
treatment followed by tumour resistance.

Derivation of mathematical model of tumour 
growth

The choice of growth law to be used to analyse the data was 
based on prior knowledge of our understanding of tumour 
growth based on empirical observations and biological 
understanding.

If cells have a cell cycle length td, then the total number of 
growing cells will double every td hours, so their volume will 
be given by 

 where 

While this suggests that tumour volume will grow in an 
exponential or modified-exponential fashion [14], it has often 
been observed empirically that tumour diameters, as opposed 
to volumes, appear to grow in a roughly linear fashion. Indeed, 
this has been known since at least the 1930s. As Mayneord 
[15] proposed, it was because growth was concentrated in an 
outer layer of proliferating cells, with cells inside that layer 
necrotic or quiescent.

Following Mayneord, if we assume that the proliferating 
layer has thickness d, which is assumed to be small relative to 
the radius r, and is growing at a rate a, then the volume of the 
layer is approximately (see Fig. 1). 

 and it is growing at a rate 

The total volume of the tumour is 

V = 2
t

td = eat

a =
log(2)

td
.

Vp = 4�r2d

dVp

dt
= aVp = a4�r2d.

V = Vp + Vc

Fig. 1  Shows a schematic of the geometrical assumptions of the 
mathematical model
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 where Vc is the volume of the necrotic core. The growth 
equation for the radius of the whole tumour is given by 

 but since 

 the growth equation of the radius becomes 

 which is solved to give the linear equation 

To translate from cell population growth (with growth 
rate a) to tumour growth, we, therefore, need just two 
additional parameters, which are the thickness of the 
growing layer d, and the initial radius R0. The linear 
growth in diameter translates to cubic, rather than expo-
nential, growth of the tumour volume.

This idea that tumour growth is driven by an outer 
layer of proliferating cells, surrounding a quiescent or 
necrotic core, has been featured in recent mathematical 
models that simulate treatment of tumours by anti-cancer 
drugs [16]. From a data analysis perspective, it also offers 
a number of clear advantages, since it allows the use of 
easily understood statistical techniques (this is not a justi-
fication, but it is certainly a convenience). It also requires 
a minimal number of parameters, which is appropriate for 
the analysis of clinical studies that are subject to a high 
degree of noise and are susceptible to over-fitting.

The linear growth equation will of course not be a 
perfect fit for the growth of all tumours. It assumes that 
the thickness of the growing layer is small relative to 
the overall tumour radius (small tumours will see vol-
ume grow in a more exponential fashion). Also, it does 
not account for the saturation observed at larger volumes, 
therefore, only applies for tumours of intermediate size. 
We assume that the linear equation holds for tumour 
shrinkage as well as tumour growth; this seems justifiable 
given that, for the tumour to shrink, dead cells need to be 
removed, which to a first approximation can be modelled 
as a linear process. Most relevantly for this study, as with 
any other simple growth law, it does not account for the 
effects of resistance. As seen next, we have, therefore, 
modified it in the simplest way possible, by introducing 
a separate linear growth rate for the resistant phase.

dr

dt
=

dr

dV

dV

dt
=

dr

dV

(

dVp

dt
+

dVc

dt

)

dVc

dt
= 0

dr

dt
=

dr

dV

dV

dt
=

dr

dV

dVp

dt
=

(

1

4�r2

)

a4�r2d = ad

r = R0 + adt.

Individual lesion time‑series

Individual lesion time-series were modelled using a piece-
wise linear model, and this was done in two parts. In the 
first part, we treated each lesion as being independent from 
each other, i.e. we did not account for which patient the 
lesions belonged to. This model was represented by the 
following pair of equations, 

where subscript j represents each lesion (j = 1,…, m), 
subscript k represents each time-point (k = 1,…, n), Ljk and 
ejk are the longest diameter and residual error, respectively, 
for lesion j at time k,  BSLj, dj and gj are the initial longest 
diameter value, decay rate and re-growth rate, respectively, 
for lesion j. The switching time-point, sp, represents the 
switch from decay to re-growth. The value of sp was deter-
mined in the following way due to identifiability issues 
with allowing it to vary across lesions. We created a small 
set of possible sp values, day 63, 116 and 179, by taking 
the mid-point between on-treatment imaging visit time-
points, on days 42, 84, 147 and 210. For each sp value, we 
fitted the pair of linear equations and chose the sp value 
which gave the best fit according to the log-likelihood; 
higher log-likelihood implies better fit. This approach 
gives an approximate switching time-point rather than an 
exact value.

The second part involved accounting for which patient 
the lesions belonged to. This was done by modifying the 
above pair of equations by introducing a new level of hier-
archy i, which represents each patient (i = 1,…, p), 

Both models were placed within a mixed effects sta-
tistical framework. This approach assumes that the indi-
vidual effects (random effects component) do not corre-
late with the independent variables. Within this analysis 
framework, the parameter BSL was assumed to follow a 
log-normal distribution, chosen to ensure positivity of 
lesion size values, and all other parameters assumed to be 
normally distributed. Furthermore, all the random vari-
ables were assumed to be independent. The within and 
between patient variability in decay and re-growth rates 
was explored through the distribution of the model param-
eters, using the coefficient of variation (standard deviation 
divided by the mean).

All analyses were done in R v 3.0.2 with the nlme pack-
age used for the mixed effects analysis.

Ljk = BSLj + djtk + ejk if tk < sp,

Ljk = BSLj + djsj + gjtk + ejk if tk ⩾ sp,

Lijk = BSLij + dijtk + eijk if tk < sp,

Lijk = BSLij + dijsij + gijtk + eijk if tk ⩾ sp.
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Results

Patients and data

The imaging characteristics of all the patients used in the 
analyses here can be seen in Table 1. The table highlights 
that in terms of treatment response, either via objective 
response rate (ORR) or % change in the sum of longest 
diameters (SLD) at week 6 (when the first on-treatment 
imaging visit occurred), dabrafenib and vemurafenib 
showed very similar outcomes compared to trametinib. 
These findings mirror the full original study results. It is 
also noticeable that the number of patients is larger in 
the vemurafenib study than the dabrafenib and trametinib 
studies; again this mirrors the original studies.

The time-series of the individual longest diameters for 
all lesions across the three studies can be seen in Fig. 2. It 
shows that the frequency of data collection is consistent 
over time and that the distribution of initial values is simi-
lar across all studies. Figure 3 shows the number of lesions 
per patient across the studies; which highlights that 80 
percent of patients across the studies have more than one 

target lesion. Overall, the visual analysis of the imaging 
data suggest that the patients selected for the time-series 
analysis were well matched across all three studies with 
respect to imaging data collection.

Individual lesion time‑series analysis

The piecewise linear models for the individual lesion time-
series described in the Methods section were fitted to tumour 
data, and the final models (used throughout the rest of the 
study) were chosen based on the higher log-likelihood (see 
also the Supplementary Tables S1, S2 and S3). The fits to 
the final piecewise linear model for each study, can be seen 
in Fig. 4. Each point in the plots represents a pair of values, 
observed and fitted. All the points in each plot lie close to the 
line of unity which implies that the final model describes the 
data well. Notably, the final model for each study included 
information on which patient the lesions belonged to, 
suggesting there is a degree of correlation in tumour size 
dynamics under treatment within a patient.

Having established that the extra information on 
which lesion belongs to which patient is important, we 
next explore the between and within patient variability of 

Table 1  Imaging characteristics 
for patients used within the 
analysis

SLD sum of longest diameters, ILD individual longest diameter, ORR objective response rate, WK6 week 6

Vemurafenib Dabrafenib Trametinib

Patients
 N 203 165 157

SLD (mm)
 Median (25th, 75th percentile) 72 (39, 122) 62 (34, 100) 64 (32, 106)

ILD (mm)
 Median (25th, 75th percentile) 17 (10, 29) 21 (16, 34) 18 (12, 30)

ORR (CR + PR) WK6
 N (%) 121 (60) 104 (63) 46 (29)

% Change SLD WK 6
 Median (25th, 75th percentile) − 34 (− 47, − 21) − 39 (− 53, − 22) − 18 (− 31, − 4)

Fig. 2  Plots showing the temporal evolution of the individual longest diameters (ILD) for all lesions for a vemurafenib, b dabrafenib and c 
trametinib
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tumour decay and resistance growth rates through model 
parameters, see Fig. 5. (For a full table of model param-
eter values, see Supplementary information Table S4.) In 
regard to the rate at which the tumour shrinks, we find 
that both within and between patient variability (coeffi-
cient of variation) are considerably different for each drug. 
The variability is highest for vemurafenib, followed by 
trametinib and finally by dabrafenib (for which the vari-
ability can be considered quite low). However, for a given 
drug, no difference in the between and within patient 
variability was found. Similarly, for the tumour re-growth 
rate, we find that different inferences can be made for the 
different drugs. Notably, no variability in the tumour re-
growth rate (between and within patient) was observed 
for vemurafenib (see Supplementary Table S1 for more 
details). Moreover, no difference similar to the extent seen 
within the decay rate between dabrafenib and trametinib 
was found.

Fitting the best model (as determined by the log-likeli-
hood) to clinical data, we obtained that the switching point 
between tumour decay and re-growth, at 63 days, is the same 
for all drugs. It must be noted that this does not imply that 
the switch from the decaying and re-growth phase is not 
the same across lesions/patients, just that from a population 
perspective this was an optimal value. The value of 63 days 
is in-between the first, week 6, and second, week 12, on-
treatment imaging visits; see Supplementary Tables S1, S2 
and S3 for log-likelihood values at other time-points.

Overall, these results show that the piecewise linear 
model highlights both qualitative and quantitative differ-
ences between these drugs, when comparing both between 
and within patient variability of tumour size dynamics.

The final question to address in this study is whether 
there is any correlation between the decay rate and re-
growth rate of tumour lesions. For vemurafenib, no dis-
tribution was required for the re-growth rate in the final 

Fig. 3  Pie-charts showing the number of patients (percentage of study population) with 1, 2, 3, 4, 5 or 7 lesions at start of treatment for a vemu-
rafenib, b dabrafenib and c trametinib

Fig. 4  Plot showing the observed individual lesion values against the fitted values, from the final model, for a vemurafenib, b dabrafenib and c 
trametinib together with the line of unity
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model (since there was no variability in these rates; see 
Fig. 5). In Fig. 6 we focus on dabrafenib and trametinib 
(where a distribution on the re-growth rate was required in 
the final model; see Fig. 5). The first observation to note 
is that we have a small number of lesions (~ 4%) under 
treatment that have either a positive decay rate (i.e. they 
are growing) or a negative re-growth rate (i.e. they are 
shrinking). These results are possible because we placed 
no restriction on the sign of the decay or re-growth rate 
during model fitting. The second observation is that there 
is no correlation between tumour shrinkage and re-growth 
rate (coefficient of determination: r2 < 0.1). These findings 
suggest that how quickly a tumour shrinks under treatment 
has no relationship to how quickly resistance within that 
lesion occurs for any of the drugs.

Discussion

The analysis of tumour heterogeneity within a patient has 
been predominantly explored at the molecular level using 
various genetic techniques [17, 18]. Measuring the com-
plete heterogeneity of all the lesions within a patient at the 
genomic level is clearly a difficult task for which no known 
accurate well-validated method currently exists. However, 
exploring heterogeneity in tumour response to treatment via 
measuring the size of individual lesions over time is achieva-
ble using routinely collected clinical trial imaging data [19]. 
Clearly, this does not provide details on the mechanisms of 
resistance. However, it may provide details on the behaviour 
of the resistant phenotypes through analysis of re-growth 
rates. It may also allow us to look at how heterogeneous drug 
response within a patient relates to drug response across 

Fig. 5  Plot showing the model derived between- and within-patient variability in tumour shrinkage and re-growth

Fig. 6  Plot showing the correla-
tion between the decay rate and 
re-growth rate for each lesion, 
for trametinib (left-panel) and 
dabrafenib (right-panel)
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patients. The purpose of the analysis conducted here was 
to explore the dynamics of tumour size using a mathemati-
cal model derived based on empirical observations and bio-
logical understanding. This model was subsequently placed 
within a mixed effects statistical framework to analyse the 
variability in dynamics at the between patient and within 
patient level.

As an exemplar of the approach we applied it to three 
phase III studies, vemurafenib (BRAF/CRAF inhibitor) [11], 
dabrafenib (BRAF inhibitor) [12] and trametinib (MEK 
inhibitor) [13]. All three drugs target the same pathway, 
mitogen activating protein kinase (MAPK) but in slightly 
different ways. The three studies were conducted in a simi-
lar patient population, BRAF mutant positive metastatic 
melanoma patients, with RECIST criteria used for imaging 
data collection. As our goal was to analyse the dynamics of 
lesions that have quantitative data over time, we restricted 
our analysis to patients who had more than a minimum of 
one on-treatment imaging visit, and to their RECIST defined 
target lesions. As well as the patient population being simi-
lar, data collection and initial distribution of target lesion 
size were also similar across all three studies.

To analyse the target lesion size time-series data, we 
derived an empirical model based on biological observations 
and mechanistic insights on tumour growth. The empirical 
model, which was piecewise linear, was then placed within 
a mixed effects framework to analyse the data. The main 
results of the analysis were:

1. Knowing which lesion belongs to which patient 
improved our ability to describe the data over assuming 
all lesions are independent of each other.

2. The within and between patient variability in decay rates 
is different for all three drugs.

3. For the re-growth rate, no variability was required for 
vemurafenib, and the within and between patient vari-
ability was similar for trametinib and dabrafenib.

4. Finally, no correlation was found between target lesion 
shrinkage and resistance growth rate.

The first result suggests that although there is heterogeneity 
in the dynamics of tumour size over time, there is also some 
degree of correlation in these dynamics across lesions within a 
patient. This suggests that there may be a degree of homogene-
ity across lesions, which is likely the result of the system-level 
effect that the drug has on the patient (i.e. inactivates the same 
components of the MAPK pathway across all lesions). This 
system-level effect seems to be more pronounced in dabrafenib 
and trametinib (low tumour shrinkage variability) and less pro-
nounced in vemurafenib (high tumour shrinkage variability). 
These conclusions are relevant in the context of recent studies 
[20] which showed an improved overall survival in metastatic 

melanoma with dabrafenib (18.2 months) and trametinib (15.6 
months) versus the survival with vemurafenib (13.6 months).

The differences seen across treatments, in terms of shrink-
age and resistance dynamics (points 2 and 3), could be attrib-
uted to the fact that these drugs have different pharmacological 
profiles. Indeed, there have been reports highlighting the subtle 
difference between the two BRAF inhibitors, vemurafenib and 
dabrafenib, both preclinically and clinically [21–23]. Over-
all, the differences highlight that drugs that appear to give the 
same study level results, vemurafenib and dabrafenib, can be 
differentiated at the individual lesion level.

The final result was that there was no correlation between 
the rate of tumour shrinkage and the growth rate of the resist-
ant clone. This result is quite important as it highlights that 
the rate at which drug-sensitive cells are killed has no bearing 
on how quickly a resistant clone will grow. This result could 
have implications for how these drugs and maybe new treat-
ments are dosed. That is there may be no need to use doses 
and schedules that aim to eradicate tumour cells quickly. 
This could lead to treatments being less toxic to a patient and 
increase the options for combination therapies.

This study is not without its caveats. The model used to 
analyse the dynamics was unable to accurately estimate the 
switching point from decay to re-growth due to identifiability 
issues related to the sparseness of the data. Thus, exploring the 
variability in this switching point across lesions and patients 
was not possible and is likely to be an issue with other clinical 
imaging datasets too given the study design here is typical of 
the field.

In summary, the mathematical modelling and analysis 
approach undertaken here highlights how more information 
can be gained from routinely collected clinical data. We hope 
this encourages the community to consider analysis at the indi-
vidual lesion level in addition to the patient level results that 
are routinely reported.
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