1,241 research outputs found

    Studies of fiber-matrix adhesion on compression strength

    Get PDF
    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip

    On the Lagrangian structure of 3D consistent systems of asymmetric quad-equations

    Full text link
    Recently, the first-named author gave a classification of 3D consistent 6-tuples of quad-equations with the tetrahedron property; several novel asymmetric 6-tuples have been found. Due to 3D consistency, these 6-tuples can be extended to discrete integrable systems on Z^m. We establish Lagrangian structures and flip-invariance of the action functional for the class of discrete integrable systems involving equations for which some of the biquadratics are non-degenerate and some are degenerate. This class covers, among others, some of the above mentioned novel systems.Comment: 21 pp, pdfLaTe

    Femtosecond photoelectron diffraction: A new approach to image molecular structure during photochemical reactions.

    No full text
    Continuing technical advances in the creation of (sub-) femtosecond VUV and X-ray pulses with Free-Electron Lasers and laser-based high-harmonic-generation sources have created new opportunities for studying ultrafast dynamics during chemical reactions. Here, we present an approach to image the geometric structure of gas-phase molecules with fewfemtosecond temporal and sub-Γ…ngstrΓΆm spatial resolution using femtosecond photoelectron diffraction. This technique allows imaging the molecules β€œfrom within” by analyzing the diffraction of inner-shell photoelectrons that are created by femtosecond VUV and X-ray pulses. Using pump-probe schemes, ultrafast structural changes during photochemical reactions can thus be directly visualized with a temporal resolution that is only limited by the pulse durations of the pump and the probe pulse and the synchronization of the two light pulses. Here, we illustrate the principle of photoelectron diffraction using a simple, geometric scattering model and present results from photoelectron diffraction experiments on laser-aligned molecules using X-ray pulses from a Free-Electron Laser

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure

    Two-color polarization control on angularly resolved attosecond time delays

    Full text link
    Measured photoionization time delays may exhibit large variations as a function of the emission angles, even for spherically symmetric targets, as shown in recent RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) experiments. The contributions from different pathways to the two-photon quantum channels can already explain the observed phase jumps that shape those angular distributions. Here, we propose a simple analytical model to describe angularly-resolved RABBITT spectra as a function of the relative polarization angle between the ionizing attosecond pulse train and the assisting IR field. We demonstrate that the angular dependencies of the measured delays can be analytically predicted and the position of the phase jumps reduced to the analysis of a few relevant parameters.Comment: 10 pages, 4 figure
    • …
    corecore