153 research outputs found

    Selective agonists of estrogen receptor isoforms : new perspectives for cardiovascular disease

    Get PDF
    The cloning of estrogen receptors (ERs) and generation of ER-deficient mice have increased our understanding of the molecular mechanisms underlying the cardiovascular effects of estrogen. It is conceivable that clinical trials of estrogens so far failed to improve cardiovascular health because of the poor ER isoform selectivity and tissue specificity of endogenous hormones as well as incorrect treatment timing and regimens. Tissue-selective ER modulators (SERMs) may be safer agents than endogenous estrogens for cardiovascular disease. Yet, designing isoform-selective ER ligands (I-SERMs) with agonist or antagonist activity is required to pursue improved pharmacological control of ERs, especially taking into account emerging evidence for the beneficial role of vascular ER alpha activation. Ideally, the quest for unique ER ligands targeted to the vascular wall should lead to compounds that merge the pharmacological profiles of SERM and I-SERM agents. This review highlights the current bases for and approaches to selective ER modulation in the cardiovascular system

    Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation

    Get PDF
    BACKGROUND: Extracellular ATP may modulate airway responsiveness. Studies on ATP-induced contraction and [Ca(2+)](i )signalling in airway smooth muscle are rather controversial and discrepancies exist regarding both ATP effects and signalling pathways. We compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and investigated the implicated signalling pathways. METHODS: Isometric contraction was measured on rat trachea, EPB and IPB isolated rings and human IPB isolated rings. [Ca(2+)](i )was monitored fluorimetrically using indo 1 in freshly isolated and cultured tracheal myocytes. Statistical comparisons were done with ANOVA or Student's t tests for quantitative variables and Ο‡(2 )tests for qualitative variables. Results were considered significant at P < 0.05. RESULTS: In rat airways, extracellular ATP (10(-6)–10(-3 )M) induced an epithelium-independent and concentration-dependent contraction, which amplitude increased from trachea to IPB. The response was transient and returned to baseline within minutes. Similar responses were obtained with the non-hydrolysable ATP analogous ATP-Ξ³-S. Successive stimulations at 15 min-intervals decreased the contractile response. In human IPB, the contraction was similar to that of rat IPB but the time needed for the return to baseline was longer. In isolated myocytes, ATP induced a concentration-dependent [Ca(2+)](i )response. The contractile response was not reduced by thapsigargin and RB2, a P2Y receptor inhibitor, except in rat and human IPB. By contrast, removal of external Ca(2+), external Na(+ )and treatment with D600 decreased the ATP-induced response. The contraction induced by Ξ±-Ξ²-methylene ATP, a P2X agonist, was similar to that induced by ATP, except in IPB where it was lower. Indomethacin and H-89, a PKA inhibitor, delayed the return to baseline in extrapulmonary airways. CONCLUSION: Extracellular ATP induces a transient contractile response in human and rat airways, mainly due to P2X receptors and extracellular Ca(2+ )influx in addition with, in IPB, P2Y receptors stimulation and Ca(2+ )release from intracellular Ca(2+ )stores. Extracellular Ca(2+ )influx occurs through L-type voltage-dependent channels activated by external Na(+ )entrance through P2X receptors. The transience of the response cannot be attributed to ATP degradation but to purinoceptor desensitization and, in extrapulmonary airways, prostaglandin-dependent PKA activation

    Roles of P2 receptors in glial cells: focus on astrocytes

    Get PDF
    Central nervous system glial cells release and respond to nucleotides under both physiological and pathological conditions, suggesting that these molecules play key roles in both normal brain function and in repair after damage. In particular, ATP released from astrocytes activates P2 receptors on astrocytes and other brain cells, allowing a form of homotypic and heterotypic signalling, which also involves microglia, neurons and oligodendrocytes. Multiple P2X and P2Y receptors are expressed by both astrocytes and microglia; however, these receptors are differentially recruited by nucleotides, depending upon specific pathophysiological conditions, and also mediate the long-term trophic changes of these cells during inflammatory gliosis. In astrocytes, P2-receptor-induced gliosis occurs via activation of the extracellular-regulated kinases (ERK) and protein kinase B/Akt pathways and involves induction of inflammatory and anti-inflammatory genes, cyclins, adhesion and antiapoptotic molecules. While astrocytic P2Y1 and P2Y2,4 are primarily involved in short-term calcium-dependent signalling, multiple P2 receptor subtypes seem to cooperate to astrocytic long-term changes. Conversely, in microglia, exposure to inflammatory and immunological stimuli results in differential functional changes of distinct P2 receptors, suggesting highly specific roles in acquisition of the activated phenotype. We believe that nucleotide-induced activation of astrocytes and microglia may originally start as a defence mechanism to protect neurons from cytotoxic and ischaemic insults; dysregulation of this process in chronic inflammatory diseases eventually results in neuronal cell damage and loss. On this basis, full elucidation of the specific roles of P2 receptors in these cells may help exploit the beneficial neuroprotective features of activated glia while attenuating their harmful properties and thus provide the basis for novel neuroprotective strategies that specifically target the purinergic system

    Simvastatin and purine analogs have a synergic effect on apoptosis of chronic lymphocytic leukemia cells

    Get PDF
    Despite many therapeutic regimens introduced recently, chronic lymphocytic leukemia (CLL) is still an incurable disorder. Thus, there is an urgent need to discover novel, less toxic and more effective drugs for CLL patients. In this study, we attempted to assess simvastatin, widely used as a cholesterol-lowering drug, both as a single agent and in combination with purine analogsβ€”fludarabine and cladribineβ€”in terms of its effect on apoptosis and DNA damage of CLL cells. The experiments were done in ex vivo short-term cell cultures of blood and bone marrow cells from newly diagnosed untreated patients. We analyzed expression of active caspase-3 and the BCL-2/BAX ratio as markers of apoptosis and the expression of phosphorylated histone H2AX (named Ξ³H2AX) and activated ATM kinase (ataxia telangiectasia mutated kinase), reporters of DNA damage. Results of our study revealed that simvastatin induced apoptosis of CLL cells concurrently with lowering of BCL-2/BAX ratio, and its pro-apoptotic effect is tumor-specific, not affecting normal lymphocytes. We observed that combinations of simvastatin+fludarabine and simvastatin+cladribine had a synergic effect in inducing apoptosis. Interestingly, the rate of apoptosis caused by simvastatin alone and in combination was independent of markers of disease progression like ZAP-70 and CD38 expression or clinical stage according to Rai classification. We have also seen an increase in Ξ³H2AX expression in parallel with activation of ATM in most of the analyzed samples. The results suggest that simvastatin can be used in the treatment of CLL patients as a single agent as well as in combination with purine analogs, being equally effective both in high-risk and good-prognosis patients. One of the mechanisms of simvastatin action is inducing DNA damage that ultimately leads to apoptosis

    Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Get PDF
    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17Ξ²-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17Ξ²-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders

    Regulation of cell-to-cell communication mediated by astrocytic ATP in the CNS

    Get PDF
    It has become apparent that glial cells, especially astrocytes, not merely supportive but are integrative, being able to receive inputs, assimilate information and send instructive chemical signals to other neighboring cells including neurons. At first, the excitatory neurotransmitter glutamate was found to be a major extracellular messenger that mediates these communications because it can be released from astrocytes in a Ca2+-dependent manner, diffused, and can stimulate extra-synaptic glutamate receptors in adjacent neurons, leading to a dynamic modification of synaptic transmission. However, recently extracellular ATP has come into the limelight as an important extracellular messenger for these communications. Astrocytes express various neurotransmitter receptors including P2 receptors, release ATP in response to various stimuli and respond to extracellular ATP to cause various physiological responses. The intercellular communication β€œCa2+ wave” in astrocytes was found to be mainly mediated by the release of ATP and the activation of P2 receptors, suggesting that ATP is a dominant β€œgliotransmitter” between astrocytes. Because neurons also express various P2 receptors and synapses are surrounded by astrocytes, astrocytic ATP could affect neuronal activities and even dynamically regulate synaptic transmission in adjacent neurons as if forming a β€œtripartite synapse” In this review, we summarize the role of astrocytic ATP, as compared with glutamate, in gliotransmission and synaptic transmission in neighboring cells, mainly focusing on the hippocampus. Dynamic communication between astrocytes and neurons mediated by ATP would be a key event in the processing or integration of information in the CNS

    Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks

    Get PDF
    The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed

    5-Lipoxygenase Metabolic Contributions to NSAID-Induced Organ Toxicity

    Full text link

    Pitavastatin Strengthens the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells.

    Get PDF
    Statins have a neuroprotective effect in neurological diseases, a pleiotropic effect possibly related to blood-brain barrier (BBB) function. We investigated the effect of pitavastatin on barrier functions of an in vitro BBB model with primary cultures of rat brain capillary endothelial cells (RBEC). Pitavastatin increased the transendothelial electrical resistance (TEER), an index of barrier tightness of interendothelial tight junctions (TJs), at a concentration of 10(-8) M, and decreased the endothelial permeability for sodium fluorescein through the RBEC monolayer. The increase in TEER was significantly reduced in the presence of isoprenoid geranylgeranyl pyrophosphate, whereas farnesyl pyrophosphate had no effect on TEER. Our immunocytochemical and Western blot analyses revealed that treatment with pitavastatin enhanced the expression of claudin-5, a main functional protein of TJs. Our data indicate that pitavastatin strengthens the barrier integrity in primary cultures of RBEC. The BBB-stabilizing effect of pitavastatin may be mediated partly through inhibition of the mevalonate pathway and subsequent up-regulation of claudin-5 expression

    Effect of substance P and capsaicin on stomach fundus and ileum of streptozotocin-diabetic rats

    No full text
    The in vitro responses of longitudinal preparations of rat stomach fundus and ileum to capsaicin at 1, 8, 4, 16 and 26 weeks and to substance P at 1 and 8 weeks from diabetes induction were studied. The results were compared with those obtained in age-matched control rats. The contractile responses to exogenous substance P and capsaicin were not affected in the stomach fundus from diabetic rats. Atropine (1 microM) did not antagonize the substance P-induced response whereas it inhibited about 90% of the capsaicin-induced response in controls and about 60% of the response in diabetic rats. At the resting tone, capsaicin induced a relaxation followed by a contraction in stomach fundus of control rats. Only a contraction was evoked in diabetic rats. In carbachol (0.05-0.1 microM) pre-stimulated strips, a complete restoration of the biphasic response was obtained in the diabetic state. The contractile response elicited by exogenous substance P was not significantly increased in the ileum preparations from diabetic rats; nevertheless the EC50 value for substance P was reduced 8 weeks after the onset of diabetes. The response elicited by capsaicin in the ileum of control rats was also biphasic. The capsaicin-induced contraction was greater in tissue from diabetic rats as compared with controls and relaxation was not evident. An age-related decrease of the contraction was also evident in both groups. Atropine (1 microM) partially antagonized the responses to substance P and capsaicin. The inhibition of the responses with atropine was more evident in control than in diabetic rats. These results suggest that the myogenic actions of several agonists in these two tissues are differently modified in experimental diabetes
    • …
    corecore