148 research outputs found
On the blow-up of some complex solutions of the 3D Navier–Stokes equations: theoretical predictions and computer simulations
We consider some complex-valued solutions of the Navier–Stokes equations in R^3 for which Li and Sinai proved a finite time blow-up. We show that there are two types of solutions, with different divergence rates, and report results of computer simulations, which give a detailed picture of the blow-up for both types. They reveal in particular important features not, as yet, predicted by the theory, such as a concentration of the energy and the enstrophy around a few singular points, while elsewhere the ‘fluid’ remains quiet
On the blow-up of some complex solutions of the 3D Navier–Stokes equations: theoretical predictions and computer simulations
We consider some complex-valued solutions of the Navier–Stokes equations in R^3 for which Li and Sinai proved a finite time blow-up. We show that there are two types of solutions, with different divergence rates, and report results of computer simulations, which give a detailed picture of the blow-up for both types. They reveal in particular important features not, as yet, predicted by the theory, such as a concentration of the energy and the enstrophy around a few singular points, while elsewhere the ‘fluid’ remains quiet
One-Dimensional Hard-Rod Caricature of Hydrodynamics: Navier-Stokes Correction
One-dimensional system of hard-rod particles of length a is studied in the hydrodynamical limit. The Navier-Stokes correction to Euler's equation is found for an initial locally-equilibrium family of states of constant density ρ ϵ [0,a^(-1)). The correction is given, at t~0, by the non-linear second-order differential operator (Bf)(q,v) = (a^2/2)(∂/∂q)[∫dw|v-w|f(q,w)(∂/∂q)f(q,v) - f(q,v)∫dw|v-w|(∂/∂q)f(q,w)](1-ρa)^(-1) where f(q,v) is the (hydrodynamical) density at a point q ϵ R^1 of the species of particles with velocity v ϵ R^1
Continuity and anomalous fluctuations in random walks in dynamic random environments: numerics, phase diagrams and conjectures
We perform simulations for one dimensional continuous-time random walks in
two dynamic random environments with fast (independent spin-flips) and slow
(simple symmetric exclusion) decay of space-time correlations, respectively. We
focus on the asymptotic speeds and the scaling limits of such random walks. We
observe different behaviors depending on the dynamics of the underlying random
environment and the ratio between the jump rate of the random walk and the one
of the environment. We compare our data with well known results for static
random environment. We observe that the non-diffusive regime known so far only
for the static case can occur in the dynamic setup too. Such anomalous
fluctuations give rise to a new phase diagram. Further we discuss possible
consequences for more general static and dynamic random environments.Comment: 33 pages, 23 figure
Random walks in random environment with Markov dependence on time
We consider a simple model of discrete-time random walk on Zν, ν = 1, 2, . . . in a random environment
independent in space and with Markov evolution in time. We focus on the application of methods based on
the properties of the transfer matrix and on spectral analysis. In section 2 we give a new simple proof of the
existence of invariant subspaces, with an explicit condition on the parameters. The remaining part is devoted
to a review of the results obtained so far for the quenched random walk and the environment from the point of
view of the random walk, with a brief discussion of the methods.Ми розглядаємо просту модель випадкового блукання з дискретним часом у Zν, ν = 1, 2, . . . у випадковому середовищi, що є незалежним у просторi i має маркiвську еволюцiю у часi. Ми зосереджуємось на застосуваннi методiв, що ґрунтуються на властивостях трансфер-матрицi i на спектральному аналiзi. У §2 ми подаємо просте доведення iснування iнварiантних пiдпросторiв, що використовує явну умову для параметрiв. Решта роботи присвячується огляду результатiв одержаних дотепер для замороженого випадкового блукання i оточення з точки зору випадкового блукання, а також короткому обговоренню методiв
Phase transition and correlation decay in Coupled Map Lattices
For a Coupled Map Lattice with a specific strong coupling emulating
Stavskaya's probabilistic cellular automata, we prove the existence of a phase
transition using a Peierls argument, and exponential convergence to the
invariant measures for a wide class of initial states using a technique of
decoupling originally developed for weak coupling. This implies the exponential
decay, in space and in time, of the correlation functions of the invariant
measures
Langevin equation for the extended Rayleigh model with an asymmetric bath
In this paper a one-dimensional model of two infinite gases separated by a
movable heavy piston is considered. The non-linear Langevin equation for the
motion of the piston is derived from first principles for the case when the
thermodynamic parameters and/or the molecular masses of gas particles on left
and right sides of the piston are different. Microscopic expressions involving
time correlation functions of the force between bath particles and the piston
are obtained for all parameters appearing in the non-linear Langevin equation.
It is demonstrated that the equation has stationary solutions corresponding to
directional fluctuation-induced drift in the absence of systematic forces. In
the case of ideal gases interacting with the piston via a quadratic repulsive
potential, the model is exactly solvable and explicit expressions for the
kinetic coefficients in the non-linear Langevin equation are derived. The
transient solution of the non-linear Langevin equation is analyzed
perturbatively and it is demonstrated that previously obtained results for
systems with the hard-wall interaction are recovered.Comment: 10 pages. To appear in Phys. Rev.
Escape orbits and Ergodicity in Infinite Step Billiards
In a previous paper we defined a class of non-compact polygonal billiards,
the infinite step billiards: to a given decreasing sequence of non-negative
numbers , there corresponds a table \Bi := \bigcup_{n\in\N} [n,n+1]
\times [0,p_{n}].
In this article, first we generalize the main result of the previous paper to
a wider class of examples. That is, a.s. there is a unique escape orbit which
belongs to the alpha and omega-limit of every other trajectory. Then, following
a recent work of Troubetzkoy, we prove that generically these systems are
ergodic for almost all initial velocities, and the entropy with respect to a
wide class of ergodic measures is zero.Comment: 27 pages, 8 figure
Recent Results on the Periodic Lorentz Gas
The Drude-Lorentz model for the motion of electrons in a solid is a classical
model in statistical mechanics, where electrons are represented as point
particles bouncing on a fixed system of obstacles (the atoms in the solid).
Under some appropriate scaling assumption -- known as the Boltzmann-Grad
scaling by analogy with the kinetic theory of rarefied gases -- this system can
be described in some limit by a linear Boltzmann equation, assuming that the
configuration of obstacles is random [G. Gallavotti, [Phys. Rev. (2) vol. 185
(1969), 308]). The case of a periodic configuration of obstacles (like atoms in
a crystal) leads to a completely different limiting dynamics. These lecture
notes review several results on this problem obtained in the past decade as
joint work with J. Bourgain, E. Caglioti and B. Wennberg.Comment: 62 pages. Course at the conference "Topics in PDEs and applications
2008" held in Granada, April 7-11 2008; figure 13 and a misprint in Theorem
4.6 corrected in the new versio
- …