25 research outputs found

    Anaplasmataceae closely related to Ehrlichia chaffeensis and Neorickettsia helminthoeca from birds in Central Europe, Hungary

    Get PDF
    Increasing amount of data attest that (in the context of vector-borne infections) birds are not only important as hosts of blood-sucking arthropod vectors, but also as reservoirs of vector-borne pathogens. From 2015 to 2019 cadavers of 100 birds (from 45 species, nine orders) were collected in Hungary, and their organs were screened for DNA from a broad range of vector-borne bacteria with PCR and sequencing. Molecular analyses revealed the presence of Anaplasmataceae, and sequencing identified bacteria closely related to Neorickettsia helminthoeca and Ehrlichia chaffeensis in a Eurasian teal (Anas crecca)and a song thrush (Turdus philomelos), respectively. All samples were PCR negative for rickettsiae, borreliae, Francisella and Coxiella spp., as well as for piroplasms. To our knowledge, this is the first report of a Neorickettsia and an Ehrlichia sp., which belong to the phylogenetic groups of N. helminthoeca and E. chaffeensis, respectively, from Europe. The potential presence of these two vector-borne bacteria needs to be taken into account during future studies on the eco-epidemiology of Anaplasmataceae in Europe

    Phylogenetic analyses of bat-associated bugs (Hemiptera: Cimicidae: Cimicinae and Cacodminae) indicate two new species close to Cimex lectularius

    Get PDF
    Abstract Background Bats are regarded as the primary (ancestral) hosts of bugs of the family Cimicidae. The historically and economically most important species in the family is the common bedbug (Cimex lectularius), because of its worldwide occurrence and association with humans. This molecular-phylogenetic study was initiated in order to expand the knowledge on the phylogeny of cimicid bugs of bats, by investigating samples from Hungary, Romania (representing central-eastern Europe) and two further countries (South Africa and Vietnam). Results Altogether 216 cimicid bugs were collected (73 Ci. lectularius, 133 Ci. pipistrelli, nine Cacodmus ignotus and one Ca. sparsilis). Members of the Cimex lectularius species group were found both in the environment of bats (only Myotis emarginatus, which is a cave/attic-dwelling species) and on three crevice-dwelling bat species (two pipistrelloid bats and M. bechsteinii). On the other hand, Ci. pipistrelli always occurred off-host (near M. myotis/blythii, which are cave/attic-dwelling species). In addition, two Cacodmus spp. were collected from Pipistrellus hesperidus. The morphological characters of these specimens are illustrated with high resolution pictures. Analysis of cytochrome c oxidase subunit 1 (cox1) sequences generated from 38 samples indicated relative genetic homogeneity of Ci. pipistrelli, while the Ci. lectularius group had two haplotypes (collected from pipistrelloid bats in Hungary and Vietnam) highly divergent from other members of this species group. These results were confirmed with molecular and phylogenetic analyses based on the internal transcribed spacer 2 (ITS2). Bat-associated bugs morphologically identified as Ca. ignotus and Ca. sparsilis were different in their cox1, but identical in their ITS2 sequences. Conclusions Molecular evidence is provided here on the existence of two new genotypes, most likely new species, within the Ci. lectularius species group. The relevant specimens (unlike the others) were collected from pipistrelloid bats, therefore the association of Ci. lectularius with different bat host species (pipistrelloid vs myotine bats) should be evaluated further as a possible background factor of this genetic divergence. In addition, Ca. ignotus is reported for the first time in South Africa

    DNA of free-living bodonids (Euglenozoa: Kinetoplastea) in bat ectoparasites: potential relevance to the evolution of parasitic trypanosomatids

    Get PDF
    Kinetoplastids are flagellated protozoa, including principally free-living bodonids and exclusively parasitic trypanosomatids. In the most species-rich genus, Trypanosoma, more than thirty species were found to infect bats worldwide. Bat trypanosomes are also known to have played a significant role in the evolution of T. cruzi, a species with high veterinary medical significance. Although preliminary data attested the occurrence of bat trypanosomes in Hungary, these were never sought for with molecular methods. Therefore, amplification of an approx. 900-bp fragment of the 18S rRNA gene of kinetoplastids was attempted from 307 ixodid and 299 argasid ticks collected from bats, and from 207 cimicid bugs collected from or near bats in Hungary and Romania. Three samples, one per each bat ectoparasite group, were PCR positive. Sequencing revealed the presence of DNA from free-living bodonids (Bodo saltans and neobodonids), but no trypanosomes were detected. The most likely source of bodonid DNA detected here in engorged bat ectoparasites is the blood of their bat hosts. However, how bodonids were acquired by bats, can only be speculated. Bats are known to drink from freshwater bodies, i.e. the natural habitats of B. saltans and related species, allowing bats to ingest bodonids. Consequently, these results suggest that at least the DNA of bodonids might pass through the alimentary mucosa of bats into their circulation. The above findings highlight the importance of studying bats and other mammals for the occurrence of bodonids in their blood and excreta, with potential relevance to the evolution of free-living kinetoplastids towards parasitism

    Isolation of infectious Lloviu virus from Schreiber’s bats in Hungary

    Get PDF
    Some filoviruses can be transmitted to humans by zoonotic spillover events from their natural host and filovirus outbreaks have occured with increasing frequency in the last years. The filovirus Lloviu virus (LLOV), was identified in 2002 in Schreiber’s bats (Miniopterus schreibersii) in Spain and was subsequently detected in bats in Hungary. Here we isolate infectious LLOV from the blood of a live sampled Schreiber’s bat in Hungary. The isolate is subsequently sequenced and cultured in the Miniopterus sp. kidney cell line SuBK12-08. It is furthermore able to infect monkey and human cells, suggesting that LLOV might have spillover potential. A multi-year surveillance of LLOV in bats in Hungary detects LLOV RNA in both deceased and live animals as well as in coupled ectoparasites from the families Nycteribiidae and Ixodidae. This correlates with LLOV seropositivity in sampled Schreiber’s bats. Our data support the role of bats, specifically Miniopterus schreibersii as hosts for LLOV in Europe. We suggest that bat-associated parasites might play a role in the natural ecology of filoviruses in temperate climate regions compared to filoviruses in the tropics

    DNA of Piroplasms of Ruminants and Dogs in Ixodid Bat Ticks.

    Get PDF
    In this study 308 ticks (Ixodes ariadnae: 26 larvae, 14 nymphs, five females; I. vespertilionis: 89 larvae, 27 nymphs, eight females; I. simplex: 80 larvae, 50 nymphs, nine females) have been collected from 200 individuals of 17 bat species in two countries, Hungary and Romania. After DNA extraction these ticks were molecularly analysed for the presence of piroplasm DNA. In Hungary I. ariadnae was most frequently identified from bat species in the family Vespertilionidae, whereas I. vespertilionis was associated with Rhinolophidae. Ixodes ariadnae was not found in Romania. Four, four and one new bat host species of I. ariadnae, I. vespertilionis and I. simplex were identified, respectively. DNA sequences of piroplasms were detected in 20 bat ticks (15 larvae, four nymphs and one female). I. simplex carried piroplasm DNA sequences significantly more frequently than I. vespertilionis. In I. ariadnae only Babesia vesperuginis DNA was detected, whereas in I. vespertilionis sequences of both B. vesperuginis and B. crassa. From I. simplex the DNA of B. canis, Theileria capreoli, T. orientalis and Theileria sp. OT3 were amplified, as well as a shorter sequence of the zoonotic B. venatorum. Bat ticks are not known to infest dogs or ruminants, i.e. typical hosts and reservoirs of piroplasms molecularly identified in I. vespertilionis and I. simplex. Therefore, DNA sequences of piroplasms detected in these bat ticks most likely originated from the blood of their respective bat hosts. This may indicate either that bats are susceptible to a broader range of piroplasms than previously thought, or at least the DNA of piroplasms may pass through the gut barrier of bats during digestion of relevant arthropod vectors. In light of these findings, the role of bats in the epidemiology of piroplasmoses deserves further investigation
    corecore