26 research outputs found

    Lung development in laminin γ2 deficiency: abnormal tracheal hemidesmosomes with normal branching morphogenesis and epithelial differentiation

    Get PDF
    BACKGROUND: Laminin γ2 (Lamc2), one of the polypeptides in laminin-332 (laminin-5), is prominent in the basement membrane of alveolar walls and airways of developing and adult lung. Laminins are important for lung morphogenesis and based on its localization, a function for laminin γ2 in lung development has been hypothesized. Targeted deletion of the laminin γ2 gene in mice results in skin blistering and neonatal death at 3–5 days after birth due to failure to thrive. METHODS: Examination of lung development in Lamc2-/- mice through 1–2 days postnatal was accomplished by morphometric analysis, lung bud culture, electron microscopy, immunohistochemical and immunofluorescence staining. RESULTS: Compared to littermate controls, Lamc2-/- lungs were similar in morphology during embryonic life. At post-natal day 1–2, distal saccules were mildly dilated by chord length measurements. Epithelial differentiation as evaluated by immunohistochemical staining for markers of ciliated cells, Clara cells, alveolar type I cells and alveolar type II cells did not reveal a difference between Lamc2-/- and littermate control lungs. Likewise, vascular development, smooth muscle cell differentiation, and elastic fiber formation looked similar, as did airway basement membrane ultrastructure. Branching morphogenesis by lung bud culture was similar in Lamc2-/- and littermate control lungs. Since laminin-332 is important for hemidesmosome formation, we examined the structure of tracheal hemidesmosomes by transmission electron microscopy. Compared to littermate controls, Lamc2-/- tracheal hemidesmosomes were less organized and lacked the increased electron density associated with the basement membrane abutting the hemidesmosome. CONCLUSION: These findings indicate that laminin γ2 and laminin-332, despite their prominence in the lung, have a minimal role in lung development through the saccular stage

    Chronic insulin treatment of diabetes does not fully normalize alterations in the retinal transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. Approximately 95% of patients with Type 1 diabetes develop some degree of retinopathy within 25 years of diagnosis despite normalization of blood glucose by insulin therapy. The goal of this study was to identify molecular changes in the rodent retina induced by diabetes that are not normalized by insulin replacement and restoration of euglycemia.</p> <p>Methods</p> <p>The retina transcriptome (22,523 genes and transcript variants) was examined after three months of streptozotocin-induced diabetes in male Sprague Dawley rats with and without insulin replacement for the later one and a half months of diabetes. Selected gene expression changes were confirmed by qPCR, and also examined in independent control and diabetic rats at a one month time-point.</p> <p>Results</p> <p>Transcriptomic alterations in response to diabetes (1376 probes) were clustered according to insulin responsiveness. More than half (57%) of diabetes-induced mRNA changes (789 probes) observed at three months were fully normalized to control levels with insulin therapy, while 37% of probes (514) were only partially normalized. A small set of genes (5%, 65 probes) was significantly dysregulated in the insulin-treated diabetic rats. qPCR confirmation of findings and examination of a one month time point allowed genes to be further categorized as prevented or rescued with insulin therapy. A subset of genes (Ccr5, Jak3, Litaf) was confirmed at the level of protein expression, with protein levels recapitulating changes in mRNA expression.</p> <p>Conclusions</p> <p>These results provide the first genome-wide examination of the effects of insulin therapy on retinal gene expression changes with diabetes. While insulin clearly normalizes the majority of genes dysregulated in response to diabetes, a number of genes related to inflammatory processes, microvascular integrity, and neuronal function are still altered in expression in euglycemic diabetic rats. Gene expression changes not rescued or prevented by insulin treatment may be critical to the pathogenesis of diabetic retinopathy, as it occurs in diabetic patients receiving insulin replacement, and are prototypical of metabolic memory.</p

    CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei.

    Get PDF
    PMC3744507Severe malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT) and CD36-/- mice were infected with P. berghei ANKA and monitored for changes in pulmonary endothelial barrier function employing an isolated perfused lung system. WT lungs demonstrated a >10-fold increase in two measures of paracellular fluid conductance and a decrease in the albumin reflection coefficient (σalb) compared to control lungs indicating a loss of barrier function. In contrast, malaria-infected CD36-/- mice had near normal fluid conductance but a similar reduction in σalb. In WT mice, lung sequestered iRBCs demonstrated production of reactive oxygen species (ROS). To determine whether knockout of CD36 could protect against ROS-induced endothelial barrier dysfunction, mouse lung microvascular endothelial monolayers (MLMVEC) from WT and CD36-/- mice were exposed to H2O2. Unlike WT monolayers, which showed dose-dependent decreases in transendothelial electrical resistance (TER) from H2O2 indicating loss of barrier function, CD36-/- MLMVEC demonstrated dose-dependent increases in TER. The differences between responses in WT and CD36-/- endothelial cells correlated with important differences in the intracellular compartmentalization of the CD36-associated Fyn kinase. Malaria infection increased total lung Fyn levels in CD36-/- lungs compared to WT, but this increase was due to elevated production of the inactive form of Fyn further suggesting a dysregulation of Fyn-mediated signaling. The importance of Fyn in CD36-dependent endothelial signaling was confirmed using in vitro Fyn knockdown as well as Fyn-/- mice, which were also protected from H2O2- and malaria-induced lung endothelial leak, respectively. Our results demonstrate that CD36 and Fyn kinase are critical mediators of the increased lung endothelial fluid conductance caused by malaria infection.JH Libraries Open Access Fun

    Expression of matrix metalloproteinases in healthy and diseased human gingiva.

    No full text
    BACKGROUND, AIMS: The aim of our study was to investigate the patterns of several metalloproteinases (MMP-1, MMP-2 and MT1-MMP) mRNAs expression using a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and to correlate them with clinical parameters and bacteriological diagnosis in healthy versus diseased human gingiva. METHODS: To identify the cell origin of MMP production, in situ hybridization (ISH) was also performed for the MMPs on the same samples. 17 gingival biopsies were collected (13 affected by advanced periodontitis and 4 healthy used as controls) and plaque index, gingival index, pocket depth and bleeding on probing were measured. Subgingival microbial samples were also collected to be analysed by a DNA probe technique. The biopsies were processed both for RT-PCR and ISH. We also investigated a model for bacterial induced MMP expression in human gingival fibroblasts (HGF) infected by Eikenella corrodens. RESULTS: We found an expression of the mRNA encoding MMP-1 only in diseased gingiva but at low levels relative to beta-actin (mean+/-SD: diseased versus healthy: 0.013+/-0.024 versus 0). Although the frequencies and levels of mRNA encoding for MMP-2 or MT1-MMP are not significantly different between each group (mean+/-SD: 0.329+/-0.344 versus 0.137+/-0.219 for MMP-2; 0.485+/-0.374 versus 0.466+/-0.296 for MT1-MMP), using ISH, we observed an expression of both mRNAs in fibroblasts of pathological specimens at sites that histologically showed signs of chronic inflammation and connective tissue remodelling. In vitro infection of HGF by Eikenella corrodens stimulated 3-fold the production of the mRNA encoding MMP-2 while other mRNAs remained unchanged. CONCLUSION: Our results did not reveal significant differences in the expression of mRNAs encoding for the MMPs between healthy and periodontitis-affected patients, reflecting the great heterogeneity in the periodontal status of individuals. However, they indicate that gingival fibroblasts are an active source of MMP-2 production in response to a periopathogen

    Laminin alpha 5 chain is required for intestinal smooth muscle development

    No full text
    Laminins (comprised of alpha, beta, and gamma chains) are heterotrimeric glycoproteins integral to all basement membranes. The function of the lammin alpha5 chain in the developing intestine was defined by analysing laminin alpha5(-/-) mutants and by grafting experiments. We show that lammin alpha5 plays a major role in smooth muscle organisation and differentiation, as excessive folding of intestinal loops and delay in the expression of specific markers are observed in laminin alpha5(-/-) mice. In the subepithelial basement membrane, loss of alpha5 expression was paralleled by ectopic or accelerated deposition of laminin alpha2 and alpha4 chains; this may explain why no obvious defects were observed in the villous form and enterocytic differentiation. This compensation process is attributable to mesenchyme-derived molecules as assessed by chick/mouse alpha5(-/-) grafted associations. Lack of the laminin alpha5 chain was accompanied by a decrease in epithelial alpha3beta1 integrin receptor expression adjacent to the epithelia] basement membrane and of Lutheran blood group glycoprotein in the smooth muscle cells, indicating that these receptors are likely mediating interactions with laminin alpha5-containing molecules. Taken together, the data indicate that the laminin alpha5 chain is essential for normal development of the intestinal smooth muscle and point to possible mesenchyme-derived compensation to promote normal intestinal morphogenesis when laminin alpha5 is absent. (C) 2003 Elsevier Science (USA). All rights reserved
    corecore