6 research outputs found

    Statistical analysis of the gamma evaluation acceptance criteria : A simulation study of 2D dose distributions under error free conditions

    No full text
    Purpose: To investigate the statistical distribution of the gamma value under error-free conditions, in order to study the relation between the gamma evaluation failure rate and statistically significant deviations in the general situation. Methods: The 2D absorbed dose distribution for 30 clinical head-and-neck IMRT fields were calculated in a QC phantom. For the same fields, dose measurements were simulated by assuming that the calculated value represented the expectation value, and by adding a random spatial uncertainty of 1–9 mm (1SD) and a random dose uncertainty of 1%–3% (1SD). The simulated measurements were then compared to the calculated dose using the gamma evaluation, and the distribution of the failure rate (i.e. the probability of gamma values above unity) was analysed. Results: For a wide range of the random measurement uncertainty, a distinct peak in the failure rate distribution was observed. The presence of higher failure rates was associated with large values of the second order derivative of the dose distribution. For spatial uncertainties larger than or equal to the resolution of the dose matrix, and for reasonable dose uncertainties, the median value of the failure rate distribution was fairly constant. Conclusions: Simulations showed, in the general case, that the probability of having a gamma value above unity under error-free conditions was not spatially uniform. We believe that this shortcoming may be partly responsible for the limited ability of the gamma evaluation method to detect errors in clinically relevant situations

    Remote beam output audits: A global assessment of results out of tolerance

    No full text
    Background and purpose: Remote beam output audits, which independently measure an institution’s machine calibration, are a common component of independent radiotherapy peer review. This work reviews the results and trends of these audit results across several organisations and geographical regions. Materials and methods: Beam output audit results from the Australian Clinical Dosimetry Services, International Atomic Energy Agency, Imaging and Radiation Oncology Core, and Radiation Dosimetry Services were evaluated from 2010 to the present. The rate of audit results outside a ±5% tolerance was evaluated for photon and electron beams as a function of the year of irradiation and nominal beam energy. Additionally, examples of confirmed calibration errors were examined to provide guidance to clinical physicists and auditing bodies. Results: Of the 210,167 audit results, 1323 (0.63%) were outside of tolerance. There was a clear trend of improved audit performance for more recent dates, and while all photon energies generally showed uniform rates of results out of tolerance, low (6 MeV) and high (≥18 MeV) energy electron beams showed significantly elevated rates. Twenty nine confirmed calibration errors were explored and attributed to a range of issues, such as equipment failures, errors in setup, and errors in performing the clinical reference calibration. Forty-two percent of these confirmed errors were detected during ongoing periodic monitoring, and not at the time of the first audit of the machine. Conclusions: Remote beam output audits have identified, and continue to identify, numerous and often substantial beam calibration errors. Keywords: Global harmonization group, Remote beam output audit, Dosimetry audit, Calibration, Q

    Testing the methodology for a dosimetric end-to-end audit of IMRT/VMAT: results of IAEA multicentre and national studies

    Get PDF
    Introduction: Within an International Atomic Energy Agency (IAEA) co-ordinated research project (CRP), a remote end-to-end dosimetric quality audit for intensity modulated radiation therapy (IMRT)/ volumetric arc therapy (VMAT) was developed to verify the radiotherapy chain including imaging, treatment planning and dose delivery. The methodology as well as the results obtained in a multicentre pilot study and national trial runs conducted in close cooperation with dosimetry audit networks (DANs) of IAEA Member States are presented. Material and methods: A solid polystyrene phantom containing a dosimetry insert with an irregular solid water planning target volume (PTV) and organ at risk (OAR) was designed for this audit. The insert can be preloaded with radiochromic film and four thermoluminescent dosimeters (TLDs). For the audit, radiotherapy centres were asked to scan the phantom, contour the structures, create an IMRT/VMAT treatment plan and irradiate the phantom. The dose prescription was to deliver 4 Gy to the PTV in two fractions and to limit the OAR dose to a maximum of 2.8 Gy. The TLD measured doses and film measured dose distributions were compared with the TPS calculations. Results: Sixteen hospitals from 13 countries and 64 hospitals from 6 countries participated in the multicenter pilot study and in the national runs, respectively. The TLD results for the PTV were all within +/- 5% acceptance limit for the multicentre pilot study, whereas for national runs, 17 participants failed to meet this criterion. All measured doses in the OAR were below the treatment planning constraint. The film analysis identified seven plans in national runs below the 90% passing rate gamma criteria. Conclusion: The results proved that the methodology of the IMRT/VMAT dosimetric end-to-end audit was feasible for its intended purpose, i.e., the phantom design and materials were suitable; the phantom was easy to use and it was robust enough for shipment. Most importantly the audit methodology was capable of identifying suboptimal IMRT/VMAT delivery

    A global look at time: a 24-country study of the equivalence of the Zimbardo time perspective inventory

    No full text
    In this article, we assess the structural equivalence of the Zimbardo Time Perspective Inventory (ZTPI) across 26 samples from 24 countries (N = 12,200). The ZTPI is proven to be a valid and reliable index of individual differences in time perspective across five temporal categories: Past Negative, Past Positive, Present Fatalistic, Present Hedonistic, and Future. We obtained evidence for invariance of 36 items (out of 56) and also the five-factor structure of ZTPI across 23 countries. The short ZTPI scales are reliable for country-level analysis, whereas we recommend the use of the full scales for individual-level analysis. The short version of ZTPI will further promote integration of research in the time perspective domain in relation to many different psycho-social processes
    corecore