48 research outputs found

    Risk factors for African swine fever incursion in Romanian domestic farms during 2019

    Get PDF
    African swine fever (ASF) entered Georgia in 2007 and the EU in 2014. In the EU, the virus primarily spread in wild boar (Sus scrofa) in the period from 2014–2018. However, from the summer 2018, numerous domestic pig farms in Romania were affected by ASF. In contrast to the existing knowledge on ASF transmission routes, the understanding of risk factors and the importance of different transmission routes is still limited. In the period from May to September 2019, 655 Romanian pig farms were included in a matched case-control study investigating possible risk factors for ASF incursion in commercial and backyard pig farms. The results showed that close proximity to outbreaks in domestic farms was a risk factor in commercial as well as backyard farms. Furthermore, in backyard farms, herd size, wild boar abundance around the farm, number of domestic outbreaks within 2 km around farms, short distance to wild boar cases and visits of professionals working on farms were statistically significant risk factors. Additionally, growing crops around the farm, which could potentially attract wild boar, and feeding forage from ASF affected areas to the pigs were risk factors for ASF incursion in backyard farms.We acknowledge financial support from EFSA, ANSVSA and from the Danish Veterinary and Food Administration (FVST) as part of the agreement of commissioned work between the Danish Ministry of Food, Agriculture and Fisheries and the University of Copenhagen.Peer reviewe

    Cross-validation of generic risk assessment tools for animal disease incursion based on a case study for African swine fever

    Get PDF
    In recent years, several generic risk assessment (RA) tools have been developed that can be applied to assess the incursion risk of multiple infectious animal diseases allowing for a rapid response to a variety of newly emerging or re-emerging diseases. Although these tools were originally developed for different purposes, they can be used to answer similar or even identical risk questions. To explore the opportunities for cross-validation, seven generic RA tools were used to assess the incursion risk of African swine fever (ASF) to the Netherlands and Finland for the 2017 situation and for two hypothetical scenarios in which ASF cases were reported in wild boar and/or domestic pigs in Germany. The generic tools ranged from qualitative risk assessment tools to stochastic spatial risk models but were all parameterized using the same global databases for disease occurrence and trade in live animals and animal products. A comparison of absolute results was not possible, because output parameters represented different endpoints, varied from qualitative probability levels to quantitative numbers, and were expressed in different units. Therefore, relative risks across countries and scenarios were calculated for each tool, for the three pathways most in common (trade in live animals, trade in animal products, and wild boar movements) and compared. For the 2017 situation, all tools evaluated the risk to the Netherlands to be higher than Finland for the live animal trade pathway, the risk to Finland the same or higher as the Netherlands for the wild boar pathway, while the tools were inconclusive on the animal products pathway. All tools agreed that the hypothetical presence of ASF in Germany increased the risk to the Netherlands, but not to Finland. The ultimate aim of generic RA tools is to provide risk-based evidence to support risk managers in making informed decisions to mitigate the incursion risk of infectious animal diseases. The case study illustrated that conclusions on the ASF risk were similar across the generic RA tools, despite differences observed in calculated risks. Hence, it was concluded that the cross-validation contributed to the credibility of their results.info:eu-repo/semantics/publishedVersio

    SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control

    Get PDF
    The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses

    Research priorities to fill knowledge gaps in wild boar management measures that could improve the control of African swine fever in wild boar populations

    Get PDF
    The European Commission asked EFSA to provide study designs for the investigation of four research domains (RDs) according to major gaps in knowledge identified by EFSA in a report published in 2019: (RD 1) African swine fever (ASF) epidemiology in wild boar; (RD 2) ASF transmission by vectors; (RD 3) African swine fever virus (ASFV) survival in the environment, and (RD 4) the patterns of seasonality of ASF in wild boar and domestic pigs in the EU. In this Scientific Opinion, the second RD on ASF epidemiology in wild boar is addressed. Twenty-nine research objectives were proposed by the working group and broader ASF expert networks and 23 of these research objectives met a prespecified inclusion criterion. Fourteen of these 23 research objectives met the predefined threshold for selection and so were prioritised based on the following set of criteria: (1) the impact on ASF management; (2) the feasibility or practicality to carry out the study; (3) the potential implementation of study results in practice; (4) a possible short time-frame study (< 1 year); (5) the novelty of the study; and (6) if it was a priority for risk managers. Finally, after further elimination of three of the proposed research objectives due to overlapping scope of studies published during the development of this opinion, 11 research priorities were elaborated into short research proposals, considering the potential impact on ASF management and the period of one year for the research activities

    Challenge of Pigs with Classical Swine Fever Viruses after C-Strain Vaccination Reveals Remarkably Rapid Protection and Insights into Early Immunity

    Get PDF
    Pre-emptive culling is becoming increasingly questioned as a means of controlling animal diseases, including classical swine fever (CSF). This has prompted discussions on the use of emergency vaccination to control future CSF outbreaks in domestic pigs. Despite a long history of safe use in endemic areas, there is a paucity of data on aspects important to emergency strategies, such as how rapidly CSFV vaccines would protect against transmission, and if this protection is equivalent for all viral genotypes, including highly divergent genotype 3 strains. To evaluate these questions, pigs were vaccinated with the Riemser® C-strain vaccine at 1, 3 and 5 days prior to challenge with genotype 2.1 and 3.3 challenge strains. The vaccine provided equivalent protection against clinical disease caused by for the two challenge strains and, as expected, protection was complete at 5 days post-vaccination. Substantial protection was achieved after 3 days, which was sufficient to prevent transmission of the 3.3 strain to animals in direct contact. Even by one day post-vaccination approximately half the animals were partially protected, and were able to control the infection, indicating that a reduction of the infectious potential is achieved very rapidly after vaccination. There was a close temporal correlation between T cell IFN-γ responses and protection. Interestingly, compared to responses of animals challenged 5 days after vaccination, challenge of animals 3 or 1 days post-vaccination resulted in impaired vaccine-induced T cell responses. This, together with the failure to detect a T cell IFN-γ response in unprotected and unvaccinated animals, indicates that virulent CSFV can inhibit the potent antiviral host defences primed by C-strain in the early period post vaccination
    corecore