370 research outputs found
Enzyme kinetic and binding studies identify determinants of specificity for the immunomodulatory enzyme ScpA, a C5a inactivating bacterial protease
peer-reviewedArticle was replaced as equations missing from Scheme 1, p. 2359 in original published version - 20210524The Streptococcal C5a peptidase (ScpA) specifically inactivates the human complement factor hC5a, a potent anaphylatoxin recently identified as a therapeutic target for treatment of COVID-19 infections. Biologics used to modulate hC5a are predominantly monoclonal antibodies. Here we present data to support an alternative therapeutic approach based on the specific inactivation of hC5a by ScpA in studies using recombinant hC5a (rhC5a). Initial characterization of ScpA confirmed activity in human serum and against rhC5a desArg (rhC5adR), the predominant hC5a form in blood. A new FRET based enzyme assay showed that ScpA cleaved rhC5a at near physiological concentrations (Km 185 nM). Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) studies established a high affinity ScpA-rhC5a interaction (KD 34 nM, KITC D 30.8 nM). SPR analyses also showed that substrate binding is dominated (88% of DGbind) by interactions with the bulky N-ter cleavage product (PN, ’core’ residues
1–67) with interactions involving the C-ter R74 contributing most of the remaining DGbind.
Furthermore, reduced binding affinity following mutation of a subset of positively charged Arginine residues of PN and in the presence of higher salt concentrations, highlighted the importance of electrostatic interactions. These data provide the first in-depth study of the ScpA-C5a interaction and indicate that ScpA’s ability to efficiently cleave physiological concentrations of C5a is driven by electrostatic interactions between an exosite on the enzyme and the ‘core’ of C5a. The results and methods described herein will facilitate engineering of ScpA to enhance its potential as a therapeutic for excessive immune
response to infectious diseas
Efficient chemical synthesis of human complement protein C3a
We report the total chemical synthesis of human C3a by one-pot native chemical ligation of three unprotected peptide segments, followed by efficient in vitro folding that yielded the anaphylatoxin C3a in high yield and excellent purity. Synthetic C3a was fully active and its crystal structure at 2.1 Å resolution showed 3 helices and a C-terminal turn motif
Complement-Mediated Neutralization of Dengue Virus Requires Mannose-Binding Lectin
Mannose-binding lectin (MBL) is a key soluble pathogen recognition protein of the innate immune system that binds specific mannose-containing glycans on the surfaces of microbial agents and initiates complement activation via the lectin pathway. Prior studies showed that MBL-dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains deficient in different complement components, we showed that inhibition of infection by insect cell- and mammalian cell-derived DENV was primarily dependent on the lectin pathway. Human MBL also bound to DENV and neutralized infection of all four DENV serotypes through complement activation-dependent and -independent pathways. Experiments with human serum from naïve individuals with inherent variation in the levels of MBL in blood showed a direct correlation between the concentration of MBL and neutralization of DENV; samples with high levels of MBL in blood neutralized DENV more efficiently than those with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis
- …