6 research outputs found

    Atmospheric Radiation Measurements Aerosol Intensive Operating Period: Comparison of aerosol scattering during coordinated flights

    Get PDF
    Journal of Geophyshysical Research, Vol. 111, No. D5, D05S09The article of record as published may be located at http://dx.doi.org/10.1029/2005JD006250In May 2003, a Twin Otter airplane, equipped with instruments for making in situ measurements of aerosol optical properties, was deployed during the Atmospheric Radiation Measurements (ARM) Program’s Aerosol Intensive Operational Period in Oklahoma. Several of the Twin Otter flights were flown in formation with an instrumented light aircraft (Cessna 172XP) that makes routine in situ aerosol profile flights over the site. This paper presents comparisons of measured scattering coefficients at 467 nm, 530 nm, and 675 nm between identical commercial nephelometers aboard each aircraft. Overall, the agreement between the two nephelometers decreases with longer wavelength. During the majority of the flights, the Twin Otter flew with a diffuser inlet while the Cessna had a 1 mm impactor, allowing for an estimation of the fine mode fraction aloft. The fine mode fraction aloft was then compared to the results of a ground-based nephelometer. Comparisons are also provided in which both nephelometers operated with identical 1 mm impactors. These scattering coefficient comparisons are favorable at the longer wavelengths (i.e., 530 nm and 675 nm), yet differed by approximately 30% at 467 nm. Mie scattering calculations were performed using size distribution measurements, made during the level flight legs. Results are also presented from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument, which compared favorably (i.e., agreed within 2%) with data from other instruments aboard the Twin Otter. With this paper, we highlight the significant implications of coarse mode (larger than 1 mm) aerosol aloft with respect to aerosol optical properties

    Comparison of in situ aerosol extinction and scattering coefficient measurements made during the Aerosol Intensive Operating Period

    Get PDF
    Journal of Geophysical Research, Vol. 111, No. D5, D05S03The article of record as published may be located at http://dx.doi.org/10.1029/2005JD006056.In May 2003, the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program sponsored the Aerosol Intensive Operating Period (AIOP) which was conducted over the ARM Climate Research Facility (ACRF) in central Oklahoma. One new instrument that flew in the AIOP, called Cadenza, employed a cavity ring-down technique to measure extinction coefficient and a reciprocal nephelometer technique to simultaneously measure scattering coefficient. This instrument is described in this paper, and measurements are compared to those of conventional instrumentation. Agreement between Cadenza extinction coefficient and that derived from combining nephelometer scattering and PSAP absorption (Neph + PSAP) was excellent, about 2%. Agreement between Cadenza scattering coefficient and TSI nephelometer scattering was also excellent, about 2%, well within the uncertainty of the nephelometer and Cadenza scattering measurements. Comparisons between these instruments, made for the special case of plumes, showed that Cadenza measured extinction and scattering several percent higher on average than the Neph + PSAP and nephelometer alone. This difference is likely due to differences in the instrument response time: The response time for Cadenza is 1 s while that for the nephelometer is a minimum of 8 s. Plumes, identified as originating from Siberian biomass burning, are characterized. Composite size distributions from wing-mounted probes showed that two of the plumes had significant large particle modes that resulted in high values of the effective radius. The effect of the large particle mode was not seen in the A ° ngstro¨m coefficient calculated from the in-cabin scattering measurements because of the characteristics of the aircraft inlet

    Atmospheric Radiation Measurements Aerosol Intensive Operating Period: Comparison of Aerosol Scattering during Coordinated Flights

    Get PDF
    In May 2003, a Twin Otter airplane, equipped with instruments for making in situ measurements of aerosol optical properties, was deployed during the Atmospheric Radiation Measurements (ARM) Program s Aerosol Intensive Operational Period in Oklahoma. Several of the Twin Otter flights were flown in formation with an instrumented light aircraft (Cessna 172XP) that makes routine in situ aerosol profile flights over the site. This paper presents comparisons of measured scattering coefficients at 467 nm, 530 nm, and 675 nm between identical commercial nephelometers aboard each aircraft. Overall, the agreement between the two nephelometers decreases with longer wavelength. During the majority of the flights, the Twin Otter flew with a diffuser inlet while the Cessna had a 1 mm impactor, allowing for an estimation of the fine mode fraction aloft. The fine mode fraction aloft was then compared to the results of a ground-based nephelometer. Comparisons are also provided in which both nephelometers operated with identical 1 mm impactors. These scattering coefficient comparisons are favorable at the longer wavelengths (i.e., 530 nm and 675 nm), yet differed by approximately 30% at 467 nm. Mie scattering calculations were performed using size distribution measurements, made during the level flight legs. Results are also presented from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument, which compared favorably (i.e., agreed within 2%) with data from other instruments aboard the Twin Otter. With this paper, we highlight the significant implications of coarse mode (larger than 1 mm) aerosol aloft with respect to aerosol optical properties

    The role of chiropractic care in older adults

    Get PDF
    <p>Abstract</p> <p>There are a rising number of older adults; in the US alone nearly 20% of the population will be 65 or older by 2030. Chiropractic is one of the most frequently utilized types of complementary and alternative care by older adults, used by an estimated 5% of older adults in the U.S. annually. Chiropractic care involves many different types of interventions, including preventive strategies. This commentary by experts in the field of geriatrics, discusses the evidence for the use of spinal manipulative therapy, acupuncture, nutritional counseling and fall prevention strategies as delivered by doctors of chiropractic. Given the utilization of chiropractic services by the older adult, it is imperative that providers be familiar with the evidence for and the prudent use of different management strategies for older adults.</p
    corecore