183 research outputs found

    African dryland ecosystem changes controlled by soil water

    Get PDF
    Monitoring long‐term vegetation dynamics in African drylands is of great importance for both ecosystem degradation studies and carbon‐cycle modelling. Here, we exploited the complementary use of optical and passive microwave satellite data— normalized difference vegetation index (NDVI) and vegetation optical depth (VOD)—to provide new insights of ecosystem changes in African drylands. During 1993–2012, 54% of African drylands experienced a significant increase of VOD, mainly located in southern Africa and west and central Africa, with an average rate of increase of (1.2 ± 2.7) × 10−3 yr−1. However, a significant decreasing NDVI was observed over 43% of the African drylands, in particular in western Niger and eastern Africa, with an average browning rate of (−0.13 ± 1.5) × 10−3 yr−1. The contrasting vegetation trends (increasing VOD and decreasing NDVI) were largely caused by an increase in the relative proportion of the woody component of the vegetation, as a result of the prevailing woody encroachment in African drylands during the study period. Soil water emerges as the dominant driver of ecosystem changes in African drylands, in particular in arid and semiarid areas. This is evidenced by a strong spatio‐temporal correlation between soil water and vegetation, where soil water changes explain about 48% of vegetation variations. This study emphasizes the potential of utilizing multiple satellite products with different strengths in monitoring different characteristics of ecosystems to evaluate ecosystem changes and reveal the underlying mechanisms of the observed changes

    Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China

    Get PDF
    Knowledge concerning the water use characteristics of revegetated species has profound implications for understanding soil–plant interaction mechanisms and guiding ecological restoration strategies in water-limited ecosystems. Although afforestation is an important way to improve ecosystem functions and services in degraded ecosystems, there is limited understanding about the water use characteristics of dominant species within and between different types of plantations. We investigated plant water use characteristics in three representative types of plantations on the Chinese Loess Plateau: mixed plantation consisting of three deciduous tree species Robinia pseudoacacia, Armeniaca sibirica and Ailanthus altissima (Mspa), pure R. pseudoacacia plantation (Pp) and pure A. sibirica plantation (Ps). We measured the leaf δ13C of the dominant species within each plantation type and the δ2H and δ18O of xylem and soil water within 400 cm of the soil surface. The results showed that three main species in the mixed plantation exhibited significant difference (p < 0.05) in proportional contributions of water sources, suggesting that the plants had water source segregation. A. sibirica in the mixed plantation utilized more proportional shallow soil water than that in the pure plantation and correspondingly lessened deep soil water depletion. However, no significant difference was found in the water uptake proportions of R. pseudoacacia between the different plantation types. The leaf δ13C values of the plant species in the mixed plantation were significantly higher than those in the pure plantations. The leaf δ13C values of R. pseudoacacia under different plantation were positively associated with SWCs, but this relationship was not observed in A. sibirica. These results indicate that plantation type affected plant water use characteristics with species-specific responses to plantation type and different water source competition effects between interspecific versus intraspecific competition

    Critical review of nuclear power plant carbon emissions

    Get PDF
    Nuclear power plays a crucial role in achieving the target of carbon neutrality to build a sustainable society. However, it is not “carbon-free” when considering its entire life cycle. Therefore, accurate accounting and monitoring of its generated carbon emissions are required to avoid miscalculations of nuclear energy as a clean energy source. In this study, the life-cycle carbon emissions of nuclear power plants (NPPs) with different reactor types are reviewed. In addition to the characteristic differences among different reactors, disparities in the review results originate from the varying emissions at the respective stages of the nuclear fuel cycle, technology choices at each stage and accounting methods and boundaries. The carbon emissions resulting from NPP construction and operation are underestimated due to the limited data and methods, which creates uncertainty in the evaluation of NPP carbon emissions. An integrated framework for carbon emissions accounting considering the construction and operation of NPPs (CACO-NPP) is proposed. This integrated framework aims to improve the accounting accuracy for carbon emissions originating from NPPs. An emerging Generation III NPP with the latest technology, HPR1000 (an advanced pressurized water reactor), was adopted as a case study. The results show that the total emissions resulting from vegetation loss, equipment manufacturing and labor input during construction and operation are 1232.91 Gg CO2 with a carbon intensity of 1.31 g CO2/kWh, indicating the notable mitigation capability of Generation III NPPs. By combining the maturity of HPR1000 technology with successive design improvements, the carbon emissions of such reactor types could be further reduced. This development is very important for realizing China’s carbon neutrality target

    Age-related water use characteristics of Robinia pseudoacacia on the Loess Plateau

    Get PDF
    Understanding water use characteristics of revegetation species is crucial for evaluating plant adaptability and guiding the sustainability of vegetation restoration in semiarid regions. Ecological restoration projects have been implemented for decades in degraded ecosystems, achieving significant changes in vegetation cover. However, water use characteristics of the main tree species at different ages remain poorly understood in such systems. We investigated water use characteristics of Robinia pseudoacacia in plantations of different stand-age (18 and 30 years). The species is the most widely planted tree in revegetation efforts on the Loess Plateau. The δ2H and δ18O of xylem and soil water within 500 cm of the soil surface and the δ13C values of plant leaves were measured during two consecutive hydrological years. The results showed that that water uptake proportions from across the soil columns changed in 18-yr R. pseudoacacia between a drier (2016) and wetter year (2017). In contrast, shallow soil water was largely comparable in a stand of 30-yr R. pseudoacacia in 2016 and 2017, and similarly the pattern of water uptake by roots from the middle and deep soil column was comparable. However, leaf-level water use efficiency (WUEi) of trees in the older plantation was higher during the wetter year, thereby partly alleviating a low infiltration to precipitation ratio. These findings suggest that different stand-age plantation trees have distinct water use characteristics and display different responses to variations in precipitation. Older plantation trees respond to increased water availability by increasing WUEi instead of switching water sources. This means that stand-age is an essential factor to be considered in ecological restoration management, which can enhance the effectiveness of vegetation restoration strategies. The study indicates useful input from research to management throughout the continuity of restoration effort

    Threshold of vapour–pressure deficit constraint on light use efficiency varied with soil water content

    Get PDF
    Understanding the constraints on light-use efficiency (LUE) induced by high evaporative water demand (vapour–pressure deficit; VPD) and soil water stress (soil moisture content; SMC) is crucial for understanding and simulating vegetation productivity, particularly in the arid and semi-arid regions. However, the relative impacts of VPD and SMC on LUE are unclear, as we lack a mechanistic understanding of impacts and their interactions. In this study, we quantified the relative roles of VPD and SMC in limiting LUE and analysed the interactions among VPD, SMC and LUE using data from CO2 and water flux stations and weather stations along a climatic gradient in the Heihe River Basin, China. We found a threshold of VPD constraint on LUE; above the threshold, LUE decreased at only 3.6% to 23.1% of the rate below the threshold. As SMC decreased, however, the VPD threshold increased, and the reduction of LUE caused by VPD decreased significantly, which is more than half of that in moister regions. Therefore, both VPD and SMC played essential roles in LUE limitation caused by water stress. A threshold also existed for heat flux and the correlation between SMC and LUE; the strength of the correlation first decreased and then increased with increasing VPD. Our results clarified the relative impacts of VPD and SMC on LUE, and can improve simulation and prediction of plant productivity
    • …
    corecore