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Abstract 

Monitoring long-term vegetation dynamics in African drylands is of great importance 

for both ecosystem degradation studies and carbon-cycle modelling. Here, we exploited 

the complementary use of optical and passive microwave satellite data – Normalized 

Difference Vegetation Index (NDVI) and Vegetation Optical Depth (VOD) – to provide 

new insights of ecosystem changes in African drylands. During 1993–2012, 54% of 

African drylands experienced a significant increase of VOD, mainly located in southern 

Africa and west and central Africa, with an average rate of increase of (1.2 ± 2.7) × 10-

3. However, a significant decreasing NDVI was observed over 43% of the African 

drylands, in particular in western Niger and eastern Africa, with an average browning 

rate of (-0.13 ± 1.5) × 10-3. The contrasting vegetation trends (increasing VOD and 

decreasing NDVI) were largely caused by an increase in the relative proportion of the 

woody component of the vegetation, as a result of the prevailing woody encroachment 

in African drylands during the study period. Soil water emerges as the dominant driver 

of ecosystem changes in African drylands, in particular in arid and semi-arid areas. This 

is evidenced by a strong spatio-temporal correlation between soil water and vegetation, 

where soil water changes explain about 48% of vegetation variations. This study 

emphasizes the potential of utilizing multiple satellite products with different strengths 

in monitoring different characteristics of ecosystems to evaluate ecosystem changes and 

reveal the underlying mechanisms of the observed changes. 

Key words: African drylands, soil water, vegetation optical depth, ecosystem changes, 

woody encroachment. 
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1. Introduction 

In sub-Saharan Africa, drylands make up more than 60% of the land and are home to 

about 425 million people (Cervigni & Morris, 2016). The vegetation in these dryland 

areas provides vital products and services for local livelihoods (Adeel, Safriel, 

Niemeijer, & White, 2005; Ryan et al., 2016). However, African dryland ecosystems 

are facing increased threats from climate change and human activities (Busby, Smith, 

& Krishnan, 2014). Enhanced warming and a rapid human population growth will 

exacerbate the risk of land degradation and desertification in the near future (Huang, 

Yu, Guan, Wang, & Guo, 2016; Wang et al., 2012). Monitoring long-term vegetation 

dynamics in drylands is of great importance for carbon-cycle modelling, projecting 

future ecosystem dynamics and implementing adaptation strategies to climate change 

(Ahlstrom et al., 2015; Liu et al., 2015). 

Over the past few decades, an increase in woody plants, characterized by woody 

thickening and encroachment, has been widely reported in African drylands (Mitchard 

& Flintrop, 2013; Sankaran et al., 2005; Tian, Brandt, Liu, Rasmussen, & Fensholt, 

2017; Wigley, Bond, & Hoffman, 2010; Zhang et al., 2019). The studies focusing on 

woody vegetation trends in African drylands tend to use dry-season normalized 

difference vegetation index (NDVI) (Brandt et al., 2016; Horion, Fensholt, Tagesson, 

& Ehammer, 2014; Mitchard & Flintrop, 2013), which is derived from the near-infrared 

and red spectral reflections, and provides a measure of chlorophyll abundance in the 

canopy layer. Vegetation optical depth (VOD) derived from microwave domain is 

complementary to NDVI. Microwave signals can penetrate vegetation canopy and 

sense water content in both the leafy and woody vegetation components, and provide a 

measurement of aboveground biomass (Brandt et al., 2018; Liu, de Jeu, McCabe, Evans, 

& van Dijk, 2011). These differences mean that NDVI is more sensitive to changes in 

herbaceous vegetation while VOD is more sensitive to changes in the woody 

component of the vegetation (Andela, Liu, van Dijk, de Jeu, & McVicar, 2013). 

Earlier analysis indicates that, due to their different characteristics, VOD and NDVI 

do not necessarily respond to environmental changes in an identical manner (Andela et 
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al., 2013). Considering NDVI and VOD records together can, therefore, provide a more 

complementary and robust characterization of vegetation dynamics, especially for 

ecosystems consisting of a mixture of herbaceous and woody vegetation. Some 

potential insights from the combined interpretation of NDVI and VOD trends have 

already been reported. For example, Liu et al (2011) briefly compared NDVI and VOD 

patterns, and quantified spatiotemporal changes in VOD and the underlying drivers at 

a global scale (Liu, van Dijk, McCabe, Evans, & de Jeu, 2013). Tian et al (2017) used 

VOD and NDVI data sets to separate leafy and woody components, to obtain a more 

accurate assessment of woody vegetation changes in global tropical drylands. However, 

these global scale studies did not focus specifically on vegetation dynamics in African 

drylands where trees and grasses co-exist for more than 60 million of years (Wang, 

D'Odorico, Ries, & Macko, 2010). 

Many factors drive ecosystem changes in African drylands. These include climate 

change, CO2 fertilization, fire regime, grazing and agriculture (Andela et al., 2013; 

Higgins & Scheiter, 2012; Liu, van Dijk, McCabe, Evans, & de Jeu, 2013; Muller, 

Overbeck, Pfadenhauer, & Pillar, 2007; Wigley et al., 2010; Yu & D'Odorico, 2014), 

but it is generally believed that vegetation changes in these areas are mainly controlled 

by water availability (Andela et al., 2013; Brandt, Rasmussen, et al., 2017; Liu, van 

Dijk, McCabe, Evans, & de Jeu, 2013; Wang, D'Odorico, O'Halloran, Caylor, & Macko, 

2010). However, the relationship between vegetation and soil water has been found to 

be stronger than that between vegetation and rainfall, probably due to precipitation 

redistribution and its lag effects on vegetation growth (Ibrahim, Balzter, Kaduk, & 

Tucker, 2015; Ji & Peters, 2005; Wei et al., 2018). Soil water, which is directly available 

to vegetation, should be a better indicator for vegetation dynamics than precipitation. 

However, previous studies have often neglected or given little consideration to soil 

water (Andela et al., 2013; Brandt, Tappan, et al., 2017; Liu, van Dijk, McCabe, Evans, 

& de Jeu, 2013). 

The objective of this study is to investigate ecosystem changes in African drylands 

and explore the mechanisms driving them. Using optical-based NDVI and microwave-

based VOD data from 1992 to 2013, we characterize the spatiotemporal changes of 
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NDVI and VOD trends over African drylands based on a linear regression algorithm, 

and analyze the relationship between NDVI and VOD trends for different land cover 

types and climate zones. We examine how vegetation variations are spatiotemporally 

interrelated with changes in soil water, and finally, we quantify the relative weights of 

the underlying factors controlling ecosystem changes in African drylands.  

2. Material and Methods 

2.1 Domain 

This study focuses on the dryland areas of continental Africa south of 20°N (i.e. 

excluding the Sahara Desert and northern Africa) (Fig. S1). Drylands are defined, 

according to the United Nations Environment Program (UNEP) aridity map, as regions 

with an aridity index (i.e. the ratio of annual precipitation to annual potential 

evapotranspiration) below 0.65 (UNEP, 1997). The category includes hyperarid, arid, 

semi-arid, and dry sub-humid regions. All the analyses are performed at a spatial 

resolution of 0.25° to match the original resolution of the VOD data set. Data were 

acquired from January 1993 through December 2012. Information on data availability 

can be found in the supplementary material. 

2.2. Data sets 

2.2.1. Vegetation data 

We used the updated third generation NDVI data set from the Global Inventory 

Modeling and Mapping Studies (GIMMS NDVI3g.v1), which is available biweekly at 

a spatial resolution of 1/12º for the entire duration of our study period. Multiple 

processing steps have been taken to minimize the errors arising from inter-sensor 

calibration, volcanic aerosols, orbital drift, and atmospheric conditions (Pinzon & 

Tucker, 2014). GIMMS NDVI 3g has better temporal consistency than other long-term 

NDVI datasets (Tian et al., 2015). In addition, GIMMS NDVI 3g.v1 is strongly 

recommended for future analysis in dryland regions rather than GIMMS NDVI 3g.v0 

due to the extreme outliers (Burrell, Evans, & Liu, 2018). In this study, to further reduce 

the effects of cloud and haze contaminations, monthly NDVI data were generated by 

the maximum value composite method. Pixels with annual mean NDVI < 0.1 were 
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considered to be non-vegetated and were masked (de Jong, Verbesselt, Zeileis, & 

Schaepman, 2013).  

Gridded monthly 0.25° resolution VOD data for 1993–2012 were retrieved from a 

series of passive microwave satellite sensors (Liu, de Jeu, McCabe, Evans, & van Dijk, 

2011). The errors associated with sensor changes in the harmonized VOD data set are 

small, and the merged data set captures long-term changes in aboveground vegetation 

water content at a global scale without contamination from sensor artefacts (Liu, van 

Dijk, McCabe, Evans, & de Jeu, 2013). When VOD values exceed 1.2, any further 

potential changes in the vegetation canopy cannot be captured (Owe, de Jeu, & Walker, 

2001), and so areas with VOD larger than 1.2 were masked out. We also masked lakes, 

rivers, and reservoirs since open water affects the microwave emissions (Liu, van Dijk, 

McCabe, Evans, & de Jeu, 2013). 

2.2.2 Environmental data 

Monthly hydrometeorological data, obtained from the Global Land Data Assimilation 

System (GLDAS) were used. These data consisted of temperature, precipitation, solar 

radiation, and soil water (the average soil water content of the top 200 – cm layer) and 

were from the Noah Land Surface Model L4 that contains a series of land surface 

parameters simulated from the Noah 3.3 model (Horion et al., 2014). More details about 

GLDAS data sets are given by Rodell et al., 2004. The difference in human population 

density between 1990 and 2010 was based on the Gridded Population of the World 

dataset (GPWv4). Soil organic carbon and sand fraction were obtained from the 

Harmonized World Soil Database (HWSD v1.2) (Wieder, Boehnert, Bonan, & 

Langseth, 2014). Mean annual burned fraction data for 1997 – 2012 were obtained from 

the Global Fire Emissions Database (GFED4s) (Giglio, Randerson, & van der Werf, 

2013). Elevation data were obtained from Global Multi-Resolution Terrain Elevation 

Data 2010 (Danielson & Gesch, 2011). We resampled the soil and elevation data to a 

0.25°spatial resolution using nearest neighbor interpolation. 

2.2.3 Land cover data 
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Land cover data were derived from the MODIS MCD12C1 product using the 17-class 

International Geosphere-Biosphere Programme (IGBP) classification scheme. To 

reduce the impacts of classification error and land cover change, only stable pixels – 

defined as those areas with no changes in the dominant land cover class during 2001–

2012 – were considered (Forzieri, Alkama, Miralles, & Cescatti, 2017). Six land cover 

classes were considered in this study: open shrublands (OSH), woody savannas (WSA), 

savannas (SAV), grasslands (GRA), crops (including crops/natural vegetation mosaics) 

(CRO), and barren or sparsely vegetated land (BSV) (Fig. S1 & Table.S1).  

2.3. Methods 

2.3.1. Linear regression  

Linear regression based on least-squares is widely used in trend detection for vegetation 

change and climate variations (Lu et al., 2015). At the pixel level, the least-squares 

regression equation can be represented as follows: 

                   y = a × t + b + ε              (2) 

where y is the dependent variable (i.e., NDVI, VOD) in year t; a is the slope of the 

equation (the change rate of the linear trend); b is the intercept of the equation; and ε is 

the error. In our case, t ranges from 1993 to 2012 (t∈N), so the sample size for each 

pixel is 20. Change is statistically significant at the p<0.05 level. 

2.3.2. Spearman’s rank correlation 

Spearman’s rank correlation coefficient was calculated to quantify the relationship 

between two variables. The significance level of correlation (p<0.05) is estimated using 

a two-tailed student’s t-test. The null hypothesis is that the two variables used to 

calculate the correlation coefficient are independent (that is R=0) (Zhou et al., 2014). 

2.3.3. Singular value decomposition 

The singular value decomposition (SVD) technique provides a way to separate coupled 

modes of variability between two fields and to identify the relationship between them 

(Deng et al., 2016). SVD can produce a set of functions that represent the dominant 

modes of variation in spatiotemporal data sets, and the relative importance of each 

pattern in explaining the observed variation across space (Liu, van Dijk, McCabe, 

Evans, & de Jeu, 2013). The spatial modes show the spatial structure of the major 
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factors that can account for the temporal variations. The time series show how the 

amplitude of the corresponding spatial mode varies with time (Liu, van Dijk, McCabe, 

Evans, & de Jeu, 2013; von Storch & Zwiers, 2002).  

2.3.4 Relative importance calculation 

We used a bootstrapping technique based on the LMG (Lindeman, Merenda and Gold) 

method to estimate the relative contributions of controlling factors to the annual 

changes of VOD (Gromping, 2007). The controlling factors considered in this study are 

as follows: change in soil water; change in temperature; change in solar radiation; 

change in population density; change in burned area fraction; mean annual rainfall; soil 

organic carbon; soil sand fraction; elevation. The LMG method estimates the relative 

importance of each variable by decomposing the sum of squares into non-negative 

contributions shared by each variable. Before the modelling, each variable was 

normalized using the Z score for each year (s) and each grid cell (i, j): 𝑋𝑋𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠(𝑖𝑖𝑖𝑖) =

𝑋𝑋 𝑠𝑠( 𝑖𝑖𝑖𝑖)−µ 𝑋𝑋1993−2012(𝑖𝑖𝑖𝑖)

𝜎𝜎 𝑋𝑋1993−2012( 𝑖𝑖𝑖𝑖)
. All explanatory variables were tested for no multi-collinearity by 

Variance Inflation Factor values (VIF < 5, Table.S2). The model was run for the African 

drylands and its sub-regions, which include arid, semi-arid, and dry sub-humid regions 

(Table. S3 &Fig. S6). 

3. Results 

3.1 Changes in NDVI and VOD 

The spatial pattern of annual mean NDVI was similar to that of annual mean VOD, and 

both had a strong similarity to the aridity map (Fig. S1 & S2). However, annual changes 

in VOD and NDVI were different during 1993-2012 (Fig. 1). For VOD, more than half 

of the African drylands (54%) experienced a significant increase of VOD. This increase 

was particularly strong in southern Africa and west and central Africa (i.e., Senegal, 

Mali, Niger, Chad and Sudan), with an average increase rate of (1.2 ± 2.7) × 10-3 yr-1. 

A decrease of VOD was located in the sub-humid zones of Nigeria, Ghana, and eastern 

Africa (except for northwestern Kenya and southwestern Tanzania) (Fig. 1a). For NDVI, 

however, browning was concentrated in western Niger and eastern Africa (43% with a 

significant decrease), with an average decrease rate of (-0.13 ± 1.5) × 10-3 yr-1. Positive 
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NDVI trends were found in the sub-humid zones of west and central Africa (i.e., 

Senegal, Ghana, Benin and the south of Sudan) and Namibia in southern Africa (Fig. 

1b). Overall, during the period of 1993–2012, there was a large interannual fluctuation 

for NDVI, but a significant increasing trend (+0.024) for VOD (p<0.05) (Fig. 1c). 

The spatial correspondence of changes in NDVI and VOD is shown in Fig. 1d, which 

can provide new insights into the relative performance of herbaceous and woody 

vegetation components in drylands. Most of the African drylands showed consistent 

NDVI and VOD trends (35.3% of the area had both trends increasing; 21.4% had both 

trends decreasing). For areas of both increased NDVI and VOD, particularly in the OS, 

SVA and WSA areas of west and central Africa and southern Africa, large clusters of 

pixels show higher trends in VOD than NDVI (Fig. 1, Table. 1). Areas with both 

decreased NDVI and VOD trends were concentrated in a large area of eastern Africa 

(i.e., Ethiopia, Kenya, Tanzania and Somalia). Areas with increased VOD and 

decreased NDVI occupied 32% of the study area, were mainly located in the GRA and 

BSV of west and central Africa and southern Africa (Fig. 1d, Table. 1), signifying an 

increase in the relative fraction of non-photosynthetic components (Andela et al., 2013). 

The combination of decreased VOD and increased NDVI was sparsely distributed in 

Nigeria and related to large scale forest to farmland conversions (Audu, 2013). 

Due to the individual characteristics of the VOD and NDVI products, different 

responses to changes in land cover are to be expected. In particular, the GRA and BSV 

showed a predominance of areas with positive trends in VOD and negative trends in 

NDVI (Fig. 2, Table .1). For regions primarily consisting of savanna and shrubland, a 

mixture of herbaceous and woody plants, the VOD trends were much greater than the 

NDVI trends (Fig. 2). The more soil water, the greater the vegetation production, 

although the increase with increasing humidity is faster for VOD than for NDVI (Fig. 

3a). The NDVI trends increased with increasing humidity, with negative NDVI trends 

over arid regions and small positive NDVI trends in more humid areas. In contrast, the 

VOD trends were positive in all climate zones. The VOD increases were strongest for 

semi-arid regions (Fig. 3b), which is consistent with widespread observations of woody 

encroachment over semi-arid areas (Andela et al., 2013). An increase in soil water was 
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also observed in arid and semi-arid zones, with relatively larger changes in the drier 

environments (Fig. 3b).  

3.2 Soil water driving ecosystem changes in African drylands 

The spatial pattern of annual mean soil water is markedly different from that of the soil 

water trends (Fig. 4a, b). Dry areas became wetter during 1993–2012, while wet areas 

became drier (Fig. 4a, b & Fig. S3a, b). The strongest drying trends were seen in eastern 

Africa (i.e., Kenya, Tanzania, Sudan, and Ethiopia) (Fig. 4b). The spatial pattern of 

VOD trends roughly matched that of soil water trends (Fig. 1a, 4b), with the exceptions 

of Somalia and the sub-humid zones of west and central Africa. Additionally, we found 

that VOD had a significantly positive correlation (p < 0.05) with soil water in most 

(about 60%) of the African drylands, especially in the dry regions. The positive 

correlation between NDVI and soil water was slightly weaker than that between VOD 

and soil water (Fig. 4c, d). Moreover, the positive relationship between soil water and 

vegetation growth is stronger than that between precipitation and vegetation growth 

(Fig. 4c, d & Fig. S3c, d), in line with previous studies (Ibrahim et al., 2015; Ji & Peters, 

2005; Wei et al., 2018). 

The SVD method was applied to investigate how interannual variations of the 

vegetation are linked to changes in soil water. Figure 5 shows the spatial structures and 

time series of the first paired modes of VOD and soil water for the period of 1993–2012 

in three sub regions. The first SVD mode explained 84.8%, 82.7% and 89.8% of the 

total squared covariance between the two fields in west and central Africa, eastern 

Africa, and southern Africa, respectively; with the correlations between the spatial 

modes being 0.83, 0.90 and 0.91, respectively. These values imply a strong linkage 

between VOD and soil water in these regions. Specifically, the spatial mode of the VOD 

field is characterized by positive anomalies, and the corresponding soil water anomaly 

pattern is also characterized by positive values over most of the domain. The increase 

in the time series for west and central Africa and southern Africa indicates that the 

increased soil water contributed to vegetation growth there (Fig. 5c, i), while, in eastern 

Africa, the decrease in the time series points to decreased soil water leading to a 

reduction in vegetation (Fig 5f). The large explained squared covariance, and strong 
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temporal correlation between VOD and soil water, suggest a strong covariability 

between these two fields throughout the study period. However, the spatiotemporal 

correlations between NDVI and soil water are weaker than those between VOD and 

soil water, especially in west and central Africa. The role played by soil water in the 

NDVI changes in these areas requires further study (Fig. S4) (Dardel et al., 2014). The 

SVD analysis adds further weight to the idea that soil water has a stronger spatio-

temporal correlation with vegetation than precipitation due to the lag effects of 

precipitation on plant growth (Fig. 5 & Fig. S5).  

A relative importance algorithm was applied to attribute the annual changes in VOD 

during 1993 – 2012 to its drivers (see method). We found that changes in soil water 

were the leading factor controlling changes in VOD with relative weights of 48.4% for 

all drylands, 52.0% in arid, 41.0% in semi-arid and 37.9% in dry sub-humid regions 

(Fig. 6). It is worth noting that the contribution of factors related to energy (temperature 

and solar radiation) and disturbance (fire, human population density) to VOD changes 

reached 37% in dry sub-humid areas. Static conditions included mean annual rainfall, 

soil organic carbon, sand fraction, and elevation, which together contributed 25% to 53% 

to VOD changes (Fig. 6). Change in rainfall was excluded from the analysis due to its 

close relationship with changes in soil water, and soil water has a larger explaining 

power for VOD than precipitation. Table S2 lists all explanatory variables without 

multicollinearity by variance inflation factor values (VIF<5). The contribution of each 

explanatory factor to changes in VOD is shown in Figure. S6. 

4. Discussion 

The relationship between the NDVI and VOD trends can provide new insights into 

the relative performance of herbaceous and woody vegetation components in drylands. 

During 1993–2012, we found that NDVI and VOD had opposing trends over 32% of 

the African drylands: VOD increased at an average rate of (1.2 ± 2.7) × 10-3 and NDVI 

had a small overall decreasing rate of (-0.13 ± 1.5) × 10 -3 (Fig. 1). A large proportion 

of each land cover type (ranging from nearly 23% to 54%) showed an increase in VOD 

and a decrease in NDVI (Table 1). We attribute these contrasting trends to the fact that 
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VOD and NDVI represent different characteristics of the vegetation, and infer an 

increase in the relative proportion of the woody component of the vegetation in African 

drylands (Andela et al., 2013; R. Fensholt et al., 2015). The results add further weight 

to the idea, widely reported over the last decades (Mitchard & Flintrop, 2013; Skowno 

et al., 2017; Wigley et al., 2010), that woody encroachment prevailed in African 

drylands during 1993–2012. Moreover, hot spot areas of increased VOD coincide with 

areas where woody vegetation increased has been reported (Tian, Brandt, Liu, 

Rasmussen, & Fensholt, 2017; Zhang et al., 2019). Contrary to the widespread greening 

in the African Sahel interpreted as a recovery from the great Sahelian droughts 

(Anyamba & Tucker, 2005; Herrmann, Anyamba, & Tucker, 2005), our study observed 

a recently decreasing NDVI in the Sahel with the most pronounced decrease in eastern 

Sudan and western Niger. This decrease in NDVI is consistent with previous studies 

documenting the Sahelian re-greening which has occurred since the 1980s, which found 

a constant decline in NDVI over Niger starting in the mid-1990s that could not be 

explained by rainfall (Dardel et al., 2014; R. Fensholt & Rasmussen, 2011).  

Our study shows that 54% of the African drylands experienced a significant increase 

in VOD during 1993–2012, and this was particularly strong in arid and semi-arid areas 

(Fig. 1a, 3b). At the same time, an increase in soil water was observed in 66.7% of the 

above areas (Fig. S7). In contrast, a negative VOD trend was observed in eastern Africa 

along with a drying soil-water trend (Fig. 1a, 4b). Generally, the spatiotemporal 

evolution of trends in VOD roughly matched those in soil water (about 62.7%) except 

for some areas in west and central Africa and Somalia (Fig. S7). In Somalia, it is 

conceivable that the increased soil water along with the negative trends in both NDVI 

and VOD might be interpreted as human-induced land degradation, caused by a 

combination of factors such as overgrazing, deforestation, poor agronomic practice and 

civil strife and conflict (Omuto, Balint, & Alim, 2014). A significant positive correlation 

(p < 0.05) between VOD and soil water was found in 60% of the African drylands. The 

high percentage of captured covariance between VOD and soil water, and the clear 

consistent trends found in the time series, suggest that soil water was the dominant 

factor governing VOD changes in African drylands (Fig. 5). Overall, in accordance with 
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previous studies documenting the effects of water availability on drylands ecosystem 

changes (Brandt et al., 2015; Brandt, Tappan, et al., 2017; Huber, Fensholt, & 

Rasmussen, 2011; R. Fensholt et al., 2012; Ibrahim et al., 2015; Wei et al., 2018; Zhang 

et al., 2019), our study showed that ecosystem changes are controlled by soil water in 

African drylands.  

At the same time, we found that pixels with negative trends in NDVI and positive 

trends in soil water cover 33.4% of the African drylands, mainly in Somalia, southern 

Africa and the north of about 14 °N, while the same regions (with the exception of 

Somalia) showed an increase in VOD (Fig. S7). This result is consistent with early 

observations by Andela et al (2013), which suggested that woody plants benefit more 

from increased soil water than herbaceous vegetation (Zhang et al., 2019). The 

contribution of soil water to vegetation changes decreased with increasing humidity 

(Fig. S6). Disturbance processes such as wildfires and human activities also affected 

the ecosystem structures and dynamic trends, in particular in dry sub-humid areas where 

energy availability plays an important role in vegetation changes (Fig. 6 & Fig. S6). 

These results are in line with a pervious study which showed that a decline in burned 

area, along with warmer and wetter climates, drove woody plant increase over Africa 

(Venter, Cramer, & Hawkins, 2018). Increased atmospheric CO2 concentration 

facilitates vegetation productivity, particularly the growth of woody plants, which may 

also enhance the risk of woody encroachment (Venter et al., 2018). Future studies 

should integrate satellite observations, field monitoring, and process-based ecosystem 

models to increase confidence in the ecosystem changes presented here and the 

proposed driving mechanisms, and therefore help to project future ecosystem evolution 

and implement effective ecosystem management. 

5. Conclusion 

Considering both NDVI and VOD helps to better characterize ecosystem changes in 

the African drylands. The decreased NDVI and increased VOD provides evidence of 

widespread woody plant increase in these areas. Soil water emerges as the dominant 

driver of ecosystem changes in African drylands, in particular in arid and semi-arid 
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areas. Our results, derived from large scale satellite observations, help to explain 

ecosystem changes in African drylands and the underlying driving mechanisms, but 

techniques such as these still require verification from more detailed ground-based 

fieldwork in the future. 
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Table Legends 

Table. 1 The percentage of areas with various combination of increasing and decreasing NDVI and 

VOD trends in each land cover type. 

 

Table  

Table. 1 The percentage of areas with various combination of increasing and decreasing NDVI and 

VOD trends in each land cover type. 

Land cover NDVI↑VOD↑ NDVI↑VOD↓ NDVI↓VOD↓ NDVI↓VOD↑ 

OS 43.62  4.51  23.60  28.27  

SAV 41.89  12.26  15.79  30.05  

GRA 28.73  6.56  23.90  40.80  

WSA 41.66  15.98  17.29  25.07  

BSV 19.36  4.33  22.27  54.03  

CRO 29.73  23.55  24.07  22.65  
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Figure Legends 

Fig. 1 Spatio-temporal changes of the observed NDVI and VOD and their co-relationship during 

1993–2012: (a) VOD; (b) NDVI; (c) changes of annual mean NDVI/VOD for all vegetated African 

drylands; (d) co-relationship of NDVI and VOD trends divided into four classes (p < 0.05). 

Fig. 2 Spatial agreement of areas with changes in VOD and areas with changes in NDVI for different 

land cover types. (a) Open shrublands (OS); (b) Savannas (SAV); (c) Grasslands (GRA); (d) Woody 

savannas (WSA); (e) Barren and sparsely vegetated (BSV); (f) Cropland (CRO). 

Fig. 3 Box plots of the distribution of annual mean NDVI, VOD, and soil water classified by aridity 

classes (a). Box plots of the distribution of observed linear trends for NDVI, VOD, and soil water 

classified by aridity classes (b). The maximum and minimum extents of the colored boxes indicate 

the 25th and 75th percentiles and the whiskers represent the 5th and 95th percentiles.  

Fig. 4 Spatial patterns of the annual mean value of soil water (a) and (b) the trends during 1993–

2012. Correlations (c) between soil water and NDVI and (d) between soil water and VOD. 

Fig. 5 Spatial patterns (left column) and time series (right column) of the first singular value 

decomposition mode between VOD and soil water for the period of 1993–2012 in the three sub 

regions indicated by the dashed black boxes in Fig. S1: west and central Africa (a-c), eastern Africa 

(d-f) and southern Africa (g-i). 

Fig. 6 Relative importance of controlling factors explaining changes in VOD (1993 – 2012) from 

the LMG method based on a least square regression model. Explanatory variables are: change in 

soil water (mm/mm yr-1); change in temperature (K yr-1) and solar radiation (W m-2 yr-1); disturbance 

includes change in population (person km-2) and burned area fraction (% yr-2); Static variables 

include: mean annual rainfall (mm yr-1); soil organic carbon (SOC); Sand fraction (%); and elevation 

(m).  
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Fig. 1 Spatio-temporal changes of the observed NDVI and VOD and their co-relationship during 

1993–2012: (a) VOD; (b) NDVI; (c) changes of annual mean NDVI/VOD for all vegetated African 

drylands; (d) co-relationship of NDVI and VOD trends divided into four classes (p < 0.05). 
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Fig. 2 Spatial agreement of areas with changes in VOD and areas with changes in NDVI for different 

land cover types. (a) Open shrublands (OS); (b) Savannas (SAV); (c) Grasslands (GRA); (d) Woody 

savannas (WSA); (e) Barren and sparsely vegetated (BSV); (f) Cropland (CRO). 
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Fig. 3 Box plots of the distribution of annual mean NDVI, VOD, and soil water classified by aridity 

classes (a). Box plots of the distribution of observed linear trends for NDVI, VOD, and soil water 

classified by aridity classes (b). The maximum and minimum extents of the colored boxes indicate 

the 25th and 75th percentiles and the whiskers represent the 5th and 95th percentiles.  
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Fig. 4 Spatial patterns of the annual mean value of soil water (a) and (b) the trends during 1993–

2012. Correlations (c) between soil water and NDVI and (d) between soil water and VOD. 
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Fig. 5 Spatial patterns (left column) and time series (right column) of the first singular value 

decomposition mode between VOD and soil water for the period of 1993–2012 in the three sub 

regions indicated by the dashed black boxes in Fig. S1: west and central Africa (a-c), eastern Africa 

(d-f) and southern Africa (g-i). 
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Fig. 6 Relative importance of controlling factors explaining changes in VOD (1993 – 2012) from 

the LMG method based on a least square regression model. Explanatory variables are: change in 

soil water (mm/mm yr-1); change in temperature (K yr-1) and solar radiation (W m-2 yr-1); disturbance 

includes change in population (person km-2) and burned area fraction (% yr-2); Static variables 

include: mean annual rainfall (mm yr-1); soil organic carbon (SOC); Sand fraction (%); and elevation 

(m).  

 



Supplementary material 

Data availability 

GIMMS 3g NDVI data are available at https://ecocast.arc.nasa.gov/data/pub/gimms/. 

The VOD data is provided by Y. Liu, Nanjing University of Information Science & 

Technology, China. GLDAS datasets (including temperature, precipitation, solar 

radiation, and soil water) are available at https://disc.gsfc.nasa.gov/datasets/. The  

Gridded Population of the World data can be downloaded from 

http://sedac.ciesin.columbia.edu/data/collection/gpw-v4. The GFED4s datasets are 

available at http://www.globalfiredata.org/data.html. The HWSD v1.2 soil maps are 

available at http://worldgrids.org/doku.php/wiki:layers. GMTED 2010 elevation data is 

available at http://www.temis.nl/data/gmted2010/index.html.  
  

https://ecocast.arc.nasa.gov/data/pub/gimms/
https://disc.gsfc.nasa.gov/datasets/
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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http://www.temis.nl/data/gmted2010/index.html


 

Fig. S1 Land cover and aridity maps: (a) land cover map derived from MODIS MCD12C1 products 
for 2001-2012; (b) aridity classes based on Global Aridity Index datasets (UNEP, 1997). The areas 
indicated by the dashed black boxes are further analyzed in Fig. 4, Fig. 5 and Fig. S5 
  



 

Fig. S2 Spatial patterns of the mean and standard deviation of vegetation indices (1993–2012). (a) 
mean NDVI; (b) mean VOD; (c) standard deviation of NDVI; (d) standard deviation of VOD. 
  



 

Fig. S3 Spatial patterns of the annual mean value of precipitation (a) and (b) the trends during 1993–
2012. Correlations (c) between precipitation and NDVI and (d) between precipitation and VOD. 
  



 

Fig. S4 Spatial patterns (left column) and time series (right column) of the first singular value 

decomposition mode between NDVI and soil water for the period of 1993–2012 in three sub regions 

indicated by the dashed black boxes in Fig. S1b: west and central Africa (a-c), eastern Africa (d-f) 

and southern Africa (g-i).



 

Fig. S5 Spatial patterns (left column) and time series (right column) of the first singular value 

decomposition mode between VOD and rainfall for the period of 1993–2012 in three sub regions 

indicated by the dashed black boxes in Fig. S1b: west and central Africa (a-c), eastern Africa (d-f) 

and southern Africa (g-i). 



 
Fig. S6 Relative contribution of controlling factors to changes in VOD from LMG method based on 
a least squares regression method. The black line is the standard deviation. Response variable is 
VOD (yr-1). Explanatory variables are: change in soil water (mm/mm yr-1); change in temperature 
(K yr-1), change in solar radiation (W m -2 yr-1); change in population (person km-2), change in burned 
area fraction (% yr-2); mean annual rainfall (mm yr-1), soil organic carbon (SOC), Sand fraction (%), 
elevation (m). The overall explaining power (R2) of the model can be found in Table. S3 
 



 

Fig. S7 Spatial agreement of trends in soil water and observed NDVI value (a); spatial agreement 

of trends in soil water and observed VOD value (b).  

  



 
Table. S1 MCD12C1 International Geosphere-Biosphere Programme (IGBP) legend and class 
descriptions (Friedl et al. 2015). 
  

Value Name Description 
7 Open Shrublands  Dominated by woody perennials (1-2m height) 10-60% cover. 
8 Woody savannas  Tree cover 30-60% (canopy >2m). 
9 Savannas Tree cover 10-30% (canopy >2m). 
10 Grasslands  Dominated by herbaceous annuals (<2m). 
12 Croplands  At least 60% of area is cultivated cropland. 
14 Cropland/Natural 

Vegetation Mosaics 
Mosaics of small-scale cultivation 40-60% with natural tree, 
shrub, or herbaceous vegetation. 

16 Barren or Sparsely 
Vegetated 

At least 60% of area is non-vegetated barren (sand, rock, soil) 
areas with less than 10% vegetation. 

 
Friedl, M., Sulla-Menashe, D. (2015). MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly 
L3 Global 0.05Deg CMG V006 [Data set]. NASA EOSDIS Land Processes DAAC. doi: 
10.5067/MODIS/MCD12C1.006 
  



Table. S2 Variance Inflation Factor (VIF) values for the explanatory variables to test for multi-
collinearity. VIF < 5 means no multicollinearity among explanatory variables whereas VIF >5 
indicate multicollinearity among explanatory variables. The study area is divided into African 
drylands (All) and its sub-regions including arid (0.03≤AI＜0.2), semi-arid (0.2≤AI＜0.5) and 
dry sub-humid regions (0.5≤AI＜0.65). Response variable is VOD (yr-1). Explanatory variables 
are: change in soil water (mm/mm yr-1); change in temperature (K yr-1), change in solar radiation 
(W m -2 yr-1); change in population (person km-2), change in burned area fraction (% yr-2); mean 
annual rainfall (mm yr-1), soil organic carbon (SOC), Sand fraction (%), elevation (m). N indicates 
the number of pixels in each of the regions analyzed. 

  

VIF values 
All 

Arid        

(0.03≤AI＜0.2) 

Semi-arid     

(0.2≤AI＜0.5) 

Dry sub-humid  

(0.5≤AI＜0.65) 

N= 16729 N=5198 N=7936 N=3595 

Change in soil water  1.3787 1.2466 1.4514 1.0918 

Change in temperature 1.3427 1.0944 1.2095 1.2683 

Change in solar radiation 1.105 1.1602 1.0863 1.0658 

Change in population 1.0067 1.0111 1.0063 1.0099 

Change in burned area fraction 1.092 1.0717 1.1107 1.1042 

Mean rainfall 1.5961 1.1236 1.4474 1.2643 

Soil organic carbon 1.106 1.5906 1.0833 1.0798 

Sand fraction 1.2111 1.686 1.2947 1.1454 

Elevation 1.1071 1.3153 1.2668 1.4313 



Table S3 The overall explaining power (R2) of a least squares regression model to explain changes 
in VOD for African drylands (All) and its sub-regions including arid (0.03≤AI＜0.2), semi-arid 
(0.2≤AI＜0.5) and dry sub-humid regions (0.5≤AI＜0.65), with explanatory variables identical 
to Fig. S6. 

Models All Arid                    

(0.03≤AI＜0.2) 

Semi-arid                

(0.2≤AI＜0.5) 

Dry sub-humid         

(0.5≤AI＜0.65) 

N R2 N R2 N R2 N R2 

Least squares model 16729 0.37 5198 0.52 7936 0.43 3595 0.14 
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