198 research outputs found

    Bacterial determinants of importance in the virulence of <i>Gallibacterium anatis</i> in poultry

    Get PDF
    International audienceAbstractGallibacterium anatis, a member of the Pasteurellaceae family, constitute a part of the normal micro-flora of the upper respiratory tract and the lower genital tract in chickens. However, increasing evidence indicate that G. anatis is also associated with a wide range of pathological changes, particularly in the reproductive organs, which leads to decreased egg production, lowered animal welfare and increased mortality. As a recently defined opportunistic pathogen limited focus has been placed on the pathogenesis and putative virulence factors permitting G. anatis to cause disease. One of the most studied virulence determinants is a large RTX-like toxin (GtxA), which has been demonstrated to induce a strong leukotoxic effect on avian macrophages. A number of fimbria of different sizes and shapes has been described. Particularly fimbriae belonging to the F17-like family appears to be common in a diverse selection of G. anatis strains. Mutants lacking the FlfA fimbria were severely attenuated in experimentally infected chickens. Additional characteristics including the ability to express capsular material possibly involved in serum resistance; secretion of metalloproteases capable of degrading immunoglobulins, and hemagglutinins, which may promote biofilm formation are all factors likely linked to the virulence of G. anatis. A major advantage for the study of how G. anatis interact with its host is the ability to perform biologically relevant experimental infections where natural routes of exposure allows reproduction of lesions observed during spontaneous infections. This review summarizes the current understanding of the G. anatis pathogenesis and discusses the contribution of the established and putative virulence factors described for this bacterium to date

    Draft genome sequence of <i>Chelonobacter oris</i> strain 1662<sup>T</sup>, associated with respiratory disease in Hermann’s tortoises

    No full text
    Chelonobacter oris 1662(T) is a type strain of the recently described species of the Pasteurellaceae family. The strain was isolated from the choanae of a captive tortoise with signs of respiratory tract infection. The genome reported here is approximately 2.6 Mb in size and has a G+C content of 47.1%

    GtxA from Gallibacterium anatis, a cytolytic RTX-toxin with a novel domain organisation

    Get PDF
    Gallibacterium anatis is a pathogen in chickens and other avian species where it is a significant cause of salpingitis and peritonitis. We found that bacterial cells and cell-free, filter-sterilised culture supernatant from the haemolytic G. anatis biovar haemolytica were highly cytotoxic towards avian-derived macrophage-like cells (HD11). We obtained the genome sequence of G. anatis 12656-12 and used a rational approach to identify a gene predicted to encode a 2026 amino acid RTX-toxin, which we named GtxA (Gallibacterium toxin). The construction of a gtxA knock-out mutant showed gtxA to be responsible for G. anatis’ haemolytic and leukotoxic activity. In addition, Escherichia coli expressing gtxA and an adjacent acyltransferase, gtxC, became cytolytic. GtxA was expressed during in vitro growth and was localised in the extracellular protein fraction in a growth phase dependent manner. GtxA had an unusual modular structure; the C-terminal 1000 amino acids of GtxA were homologous to the classical pore-forming RTX-toxins in other members of Pasteurellaceae. In contrast, the N-terminal approximately 950 amino acids had few significant matches in sequence databases. Expression of truncated GtxA proteins demonstrated that the C-terminal RTX-domain had a lower haemolytic activity than the full-length toxin, indicating that the N-terminal domain was required for maximal haemolytic activity. Cytotoxicity towards HD11 cells was not detected with the C-terminal alone, suggesting that the N-terminal domain plays a critical role for the leukotoxicity

    Chaperone-usher fimbriae in a diverse selection of <i>Gallibacterium</i> genomes

    Get PDF
    BACKGROUND: Fimbriae are bacterial cell surface organelles involved in the pathogenesis of many bacterial species, including Gallibacterium anatis, in which a F17-like fimbriae of the chaperone-usher (CU) family was recently shown to be an important virulence factor and vaccine candidate. To reveal the distribution and variability of CU fimbriae 22 genomes of the avian host-restricted bacteria Gallibacterium spp. were investigated. Fimbrial clusters were classified using phylogeny-based and conserved domain (CD) distribution-based approaches. To characterize the fimbriae in depth evolutionary analysis and in vitro expression of the most prevalent fimbrial clusters was performed. RESULTS: Overall 48 CU fimbriae were identified in the genomes of the examined Gallibacterium isolates. All fimbriae were assigned to Îł4 clade of the CU fimbriae of Gram-negative bacteria and were organized in four-gene clusters encoding a putative major fimbrial subunit, a chaperone, an usher and a fimbrial adhesin. Five fimbrial clusters (Flf-Flf4) and eight conserved domain groups were defined to accommodate the identified fimbriae. Although, the number of different fimbrial clusters in individual Gallibacterium genomes was low, there was substantial amino acid sequence variability in the major fimbrial subunit and the adhesin proteins. The distribution of CDs among fimbrial clusters, analysis of their flanking regions, and evolutionary comparison of the strains revealed that Gallibacterium fimbrial clusters likely underwent evolutionary divergence resulting in highly host adapted and antigenically variable fimbriae. In vitro, only the fimbrial subunit FlfA was expressed in most Gallibacterium strains encoding this protein. The absence or scarce expression of the two other common fimbrial subunits (Flf1A and Flf3A) indicates that their expression may require other in vitro or in vivo conditions. CONCLUSIONS: This is the first approach establishing a systematic fimbria classification system within Gallibacterium spp., which indicates a species-wide distribution of Îł(4) CU fimbriae among a diverse collection of Gallibacterium isolates. The expression of only one out of up to three fimbriae present in the individual genomes in vitro suggests that fimbriae expression in Gallibacterium is highly regulated. This information is important for future attempts to understand the role of Gallibacterium fimbriae in pathogenesis, and may prove useful for improved control of Gallibacterium infections in chickens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-1093) contains supplementary material, which is available to authorized users

    Recombinant proteins from Gallibacterium anatis induces partial protection against heterologous challenge in egg-laying hens

    Get PDF
    International audienceAbstractGallibacterium anatis is a Gram-negative bacterium and major cause of salpingitis and peritonitis in egg-laying hens, thereby contributing to decreased egg production and increased mortality among the hens. Due to widespread drug resistance and antigenic diversity, novel prophylactic measures are urgently required. The aim of the present study was to evaluate the cross-protective capacity of three recombinant proteins recently identified as potential vaccine candidates; GtxA-N, GtxA-C, and FlfA, in an in vivo challenge model. Nine groups of birds were immunized twice with each protein, respectively, with 14 days separation. Additionally, three groups served as non-immunized controls. After 3 weeks, the birds were challenged with either of three G. anatis strains: 12656-12, 7990 or IPDH 697-78, respectively. Blood samples were taken at three different time points prior to challenge, as well as 48 h after challenge. All birds were euthanized and subjected to a post mortem procedure including scoring of lesions and sampling for bacterial growth. Moreover, ELISA assays were used to quantify antigen-specific IgG titers in serum. The results showed that all three proteins induced protection against the homologous strain 12656-12. No protein induced complete protection against strain 7990, although FlfA reduced the bacterial re-isolation rate. Moreover, immunization with GtxA-N and FlfA induced protection, while GtxA-C reduced the bacterial re-isolation, against strain IPDH 697-78. Thus although complete cross-protection against all three strains was not achieved, the results hold great promise for a new generation of immunogens in the search for novel prophylactic measures against G. anatis

    Quinolone Resistance in Gallibacterium anatis Determined by Mutations in Quinolone Resistance-Determining Region.

    Get PDF
    Control of the important pathogen, Gallibacterium anatis, which causes salpingitis and peritonitis in poultry, relies on treatment using antimicrobial compounds. Among these, quinolones and fluoroquinolones have been used extensively, leading to a rise in the prevalence of resistant strains. The molecular mechanisms leading to quinolone resistance, however, have not previously been described for G. anatis, which is the aim of this study. The present study combines phenotypic antimicrobial resistance data with genomic sequence data from a collection of G. anatis strains isolated from avian hosts between 1979 and 2020. Minimum inhibitory concentrations were determined for nalidixic acid, as well as for enrofloxacin for each included strain. In silico analyses included genome-wide queries for genes known to convey resistance towards quinolones, identification of variable positions in the primary structure of quinolone protein targets and structural prediction models. No resistance genes known to confer resistance to quinolones were identified. Yet, a total of nine positions in the quinolone target protein subunits (GyrA, GyrB, ParC and ParE) displayed substantial variation and were further analyzed. By combining variation patterns with observed resistance patterns, positions 83 and 87 in GyrA, as well as position 88 in ParC, appeared to be linked to increased resistance towards both quinolones included. As no notable differences in tertiary structure were observed between subunits of resistant and sensitive strains, the mechanism behind the observed resistance is likely due to subtle shifts in amino acid side chain properties

    Injection vaccines formulated with nucleotide, liposomal or mineral oil adjuvants induce distinct differences in immunogenicity in rainbow trout

    Get PDF
    Protection facilitated by the widespread use of mineral oil adjuvanted injection vaccines in salmonid fish comes with adverse effects of varying severity. In this study, we characterized the immunological profiles of two alternative vaccine formulations, both with proven efficacy and an improved safety profile in rainbow trout. Experimental injection vaccines were prepared on an identical whole-cell Aeromonas salmonicida bacterin platform and were formulated with CpG oligodeoxynucleotides, a liposomal (CAF01) or a benchmark mineral oil adjuvant, respectively. A naĂŻve group, as well as bacterin and saline-injected groups were also included. Following administration, antigen-specific serum antibody titers, the tissue distribution of immune cell markers, and the expression of immune-relevant genes following the in vitro antigenic restimulation of anterior kidney leukocytes was investigated. Immunohistochemical staining suggested prolonged antigen presentation for the particulate formulations and increased mucosal presence of antigen-presenting cells in all immunized fish. Unlike the other immunized groups, the CAF01 group only displayed a transient elevation in specific antibody titers and immunohistochemical observations, and the transcription data suggest an increased role of cell-mediated immunity for this group. Finally, the transcription profile of the CpG formulation approached that of a TH1 profile. When compared to the benchmark formulation, CAF01 and CpG adjuvants induce slight, but distinct differences in the resulting protective immune responses. This is important, as it allows a broader immunological approach for the future development of safer vaccines.publishedVersio

    Further evidence of Chelonid herpesvirus 5 (ChHV5) latency : High levels of ChHV5 DNA detected in clinically healthy marine turtles

    Get PDF
    The Chelonid herpesvirus 5 (ChHV5) has been consistently associated with fibropapillomatosis (FP), a transmissible neoplastic disease of marine turtles. Whether ChHV5 plays a causal role remains debated, partly because while FP tumours have been clearly documented to contain high concentrations of ChHV5 DNA, recent PCRbased studies have demonstrated that large proportions of asymptomatic marine turtles are also carriers of ChHV5. We used a real-time PCR assay to quantify the levels of ChHV5 Glycoprotein B (gB) DNA in both tumour and non-tumour skin tissues, from clinically affected and healthy turtles drawn from distant ocean basins across four species. In agreement with previous studies, higher ratios of viral to host DNA were consistently observed in tumour versus non-tumour tissues in turtles with FP. Unexpectedly however, the levels of ChHV5 gB DNA in clinically healthy turtles were significantly higher than in non-tumour tissues from FP positive turtles. Thus, a large proportion of clinically healthy sea turtle populations worldwide across species carry ChHV5 gB DNA presumably through persistent latent infections. ChHV5 appears to be ubiquitous regardless of the animals' clinical conditions. Hence, these results support the theory that ChHV5 is a near ubiquitous virus with latency characteristics requiring co-factors, possibly environmental or immune related, to induce FP

    The vaginal microbiome is stable in prepubertal and sexually mature Ellegaard GĂśttingen Minipigs throughout an estrous cycle

    Get PDF
    International audienceAbstractAlthough the pig has been introduced as an advanced animal model of genital tract infections in women, almost no knowledge exists on the porcine vaginal microbiota, especially in barrier-raised GÜttingen Minipigs. In women, the vaginal microbiota plays a crucial role for a healthy vaginal environment and the fate of sexually transmitted infections such as Chlamydia trachomatis infections. Therefore, knowledge on the vaginal microbiota is urgently needed for the minipig model. The aim of this study was to characterize the microbiota of the anterior vagina by 16 s rRNA gene sequencing in prepubertal and sexually mature GÜttingen Minipigs during an estrous cycle. The dominating phyla in the vaginal microbiota consisted of Firmicutes, Proteobacteria, Actinobacteria, Bacteriodetes and Tenericutes. The most abundant bacterial families were Enterobacteriaceae, unclassified families from Gammaproteobacteria, Clostridiales Family XI Incertae Sedis, Paenibacillaceae, Lactobacillaceae, Ruminococcaceae and Syntrophaceae. We found a higher abundance of Lactobacillaceae in the prepubertal GÜttingen Minipigs compared to sexually mature non-pregnant GÜttingen Minipigs. However, correlation tests and diversity parameters revealed a very stable vaginal microbiota in the GÜttingen Minipigs, both before and after sexual maturity and on different days throughout an estrous cycle. The vaginal microbiota in GÜttingen Minipigs was not dominated by lactobacilli, as it is in women and according to our results the minipig vaginal microbiota is very stable, in opposite to women. These differences should be considered when using the minipig as a model of the genital tract in women
    • …
    corecore