77 research outputs found

    Of RNA-binding proteins and their targets: interaction determines expression

    Full text link

    Computational Analysis of Binding of the GBD Domain of WASP to Different Binding Partners

    Get PDF
    The GTP-ase binding domain (GBD) of the signaling protein Wiskott-Aldrich Syndrome Protein (WASP) is intrinsically disordered and mutations in it have been linked with Wiskott-Aldrich Syndrome (WAS), an X-linked disorder characterized by thrombocytopenia, eczema and recurrent infections. Here, we use molecular dynamics simulations and the semi-empirical GROMOS 45A3 force field to study interaction of the GBD domain of WASP with a fragment of the protein EspFU as well as with the VCA domain of WASP (auto-inhibited state). EspFU is secreted and used by enterohaemorrhagic Escherichia coli to hijack eukaryotic cytoskeletal machinery, and it does so by competitively disrupting the auto-inhibitory interaction between GBD and VCA domains of WASP. In addition, naturally occurring mutations in the VCA domain cause different variants of WAS. Our simulations confirm that the EspFU domain binds the GBD domain similarly to the VCA domain, which explains why these two binding partners are competitive binders of the GBD domain. Furthermore, we propose a possible mechanism to explain the higher affinity of EspFU for the GBD domain. Finally, we show that the mutations in the VCA domain responsible for Wiskott-Aldrich syndrome can cause formation of β-sheets in the VCA domain. This effect, combined with the mutation-induced rearrangement of the salt bridge network, consequently disables tight binding between GBD and VCA domains. Overall, our results provide a microscopic, dynamic picture behind the two main ways through which the interactions involving the GBD domain of WASP participate in different disease processes.(doi: 10.5562/cca1806

    Effect of Oxidative Damage on the Stability and Dimerization of Superoxide Dismutase 1

    Get PDF
    During their life cycle, proteins are subject to different modifications involving reactive oxygen species. Such oxidative damage to proteins may lead to the formation of insoluble aggregates and cytotoxicity and is associated with age-related disorders including neurodegenerative diseases, cancer, and diabetes. Superoxide dismutase 1 (SOD1), a key antioxidant enzyme in human cells, is particularly susceptible to such modifications. Moreover, this homodimeric metalloenzyme has been directly linked to both familial and sporadic amyotrophic lateral sclerosis (ALS), a devastating, late-onset motor neuronal disease, with more than 150 ALS-related mutations in the SOD1 gene. Importantly, oxidatively damaged SOD1 aggregates have been observed in both familial and sporadic forms of the disease. However, the molecular mechanisms as well as potential implications of oxidative stress in SOD1-induced cytotoxicity remain elusive. In this study, we examine the effects of oxidative modification on SOD1 monomer and homodimer stability, the key molecular properties related to SOD1 aggregation. We use molecular dynamics simulations in combination with thermodynamic integration to study microscopic-level site-specific effects of oxidative "mutations" at the dimer interface, including lysine, arginine, proline and threonine carbonylation, and cysteine oxidation. Our results show that oxidative damage of even single residues at the interface may drastically destabilize the SOD1 homodimer, with several modifications exhibiting a comparable effect to that of the most drastic ALS-causing mutations known. Additionally, we show that the SOD1 monomer stability decreases upon oxidative stress, which may lead to partial local unfolding and consequently to increased aggregation propensity. Importantly, these results suggest that oxidative stress may play a key role in development of ALS, with the mutations in the SOD1 gene being an additional factor

    Intrinsically Disordered Regions May Lower the Hydration Free Energy in Proteins: A Case Study of Nudix Hydrolase in the Bacterium Deinococcus radiodurans

    Get PDF
    The proteome of the radiation- and desiccation-resistant bacterium D. radiodurans features a group of proteins that contain significant intrinsically disordered regions that are not present in non-extremophile homologues. Interestingly, this group includes a number of housekeeping and repair proteins such as DNA polymerase III, nudix hydrolase and rotamase. Here, we focus on a member of the nudix hydrolase family from D. radiodurans possessing low-complexity N- and C-terminal tails, which exhibit sequence signatures of intrinsic disorder and have unknown function. The enzyme catalyzes the hydrolysis of oxidatively damaged and mutagenic nucleotides, and it is thought to play an important role in D. radiodurans during the recovery phase after exposure to ionizing radiation or desiccation. We use molecular dynamics simulations to study the dynamics of the protein, and study its hydration free energy using the GB/SA formalism. We show that the presence of disordered tails significantly decreases the hydration free energy of the whole protein. We hypothesize that the tails increase the chances of the protein to be located in the remaining water patches in the desiccated cell, where it is protected from the desiccation effects and can function normally. We extrapolate this to other intrinsically disordered regions in proteins, and propose a novel function for them: intrinsically disordered regions increase the “surface-properties” of the folded domains they are attached to, making them on the whole more hydrophilic and potentially influencing, in this way, their localization and cellular activity

    Structure and dynamics of two β-peptides in solution from molecular dynamics simulations validated against experiment

    Get PDF
    We have studied two different β-peptides in methanol using explicit solvent molecular dynamics simulations and the GROMOS 53A6 force field: a heptapeptide (peptide 1) expected to form a left-handed 314-helix, and a hexapeptide (peptide 2) expected to form a β-hairpin in solution. Our analysis has focused on identifying and analyzing the stability of the dominant secondary structure conformations adopted by the peptides, as well as on comparing the experimental NOE distance upper bounds and 3J-coupling values with their counterparts calculated on the basis of the simulated ensembles. Moreover, we have critically compared the present results with the analogous results obtained with the GROMOS 45A3 (peptide 1) and 43A1 (peptide 2) force fields. We conclude that within the limits of conformational sampling employed here, the GROMOS 53A6 force field satisfactorily reproduces experimental findings regarding the behavior of short β-peptides, with accuracy that is comparable to but not exceeding that of the previous versions of the force field. GCE legend Conformational clustering analysis of the simulated ensemble of a ß-hexapeptide with two different simulation setups (a and b). The central members of all of the clusters populating more than 5% of all of the structures are shown, together with the most dominant hydrogen bonds and the corresponding percentages of cluster members containing the

    Widespread autogenous mRNA–protein interactions detected by CLIP-seq

    Full text link
    Autogenous interactions between mRNAs and the proteins they encode are implicated in cellular feedback-loop regulation, but their extent and mechanistic foundation are unclear. It was recently hypothesized that such interactions may be common, reflecting the role of intrinsic nucleobase–amino acid affinities in shaping the genetic code's structure. Here we analyze a comprehensive set of CLIP-seq experiments involving multiple protocols and report on widespread autogenous interactions across different organisms. Specifically, 230 of 341 (67%) studied RNA-binding proteins (RBPs) interact with their own mRNAs, with a heavy enrichment among high-confidence hits and a preference for coding sequence binding. We account for different confounding variables, including physical (overexpression and proximity during translation), methodological (difference in CLIP protocols, peak callers and cell types) and statistical (treatment of null backgrounds). In particular, we demonstrate a high statistical significance of autogenous interactions by sampling null distributions of fixed-margin interaction matrices. Furthermore, we study the dependence of autogenous binding on the presence of RNA-binding motifs and structured domains in RBPs. Finally, we show that intrinsic nucleobase–amino acid affinities favor co-aligned binding between mRNA coding regions and the proteins they encode. Our results suggest a central role for autogenous interactions in RBP regulation and support the possibility of a fundamental connection between coding and binding

    Structural mechanism for the recognition and ubiquitination of a single nucleosome residue by Rad6-Bre1

    Get PDF
    Cotranscriptional ubiquitination of histone H2B is key to gene regulation. The yeast E3 ubiquitin ligase Bre1 (human RNF20/40) pairs with the E2 ubiquitin conjugating enzyme Rad6 to monoubiquitinate H2B at Lys123. How this single lysine residue on the nucleosome core particle (NCP) is targeted by the Rad6-Bre1 machinery is unknown. Using chemical cross-linking and mass spectrometry, we identified the functional interfaces of Rad6, Bre1, and NCPs in a defined in vitro system. The Bre1 RING domain cross-links exclusively with distinct regions of histone H2B and H2A, indicating a spatial alignment of Bre1 with the NCP acidic patch. By docking onto the NCP surface in this distinct orientation, Bre1 positions the Rad6 active site directly over H2B Lys123. The Spt-Ada-Gcn5 acetyltransferase (SAGA) H2B deubiquitinase module competes with Bre1 for binding to the NCP acidic patch, indicating regulatory control. Our study reveals a mechanism that ensures site-specific NCP ubiquitination and fine-tuning of opposing enzymatic activities

    Hydrophilicity Matching – A Potential Prerequisite for the Formation of Protein-Protein Complexes in the Cell

    Get PDF
    A binding event between two proteins typically consists of a diffusional search of binding partners for one another, followed by a specific recognition of the compatible binding sites resulting in the formation of the complex. However, it is unclear how binding partners find each other in the context of the crowded, constantly fluctuating, and interaction-rich cellular environment. Here we examine the non-specific component of protein-protein interactions, which refers to those physicochemical properties of the binding partners that are independent of the exact details of their binding sites, but which can affect their localization or diffusional search for one another. We show that, for a large set of high-resolution experimental 3D structures of binary, transient protein complexes taken from the DOCKGROUND database, the binding partners display a surprising, statistically significant similarity in terms of their total hydration free energies normalized by a size-dependent variable. We hypothesize that colocalization of binding partners, even within individual cellular compartments such as the cytoplasm, may be influenced by their relative hydrophilicity, potentially in response to local hydrophilic gradients

    Life is translation

    No full text
    corecore