5,865 research outputs found
Alien Registration- Boisvert, Joseph A. (Auburn, Androscoggin County)
https://digitalmaine.com/alien_docs/30862/thumbnail.jp
Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100)
The rate of diffusion of a Cu adatom on the Cu(100) surface is calculated
using thermodynamic integration within the transition state theory. The results
are found to be in excellent agreement with the essentially exact values from
molecular-dynamics simulations. The activation energy and related entropy are
shown to be effectively independent of temperature, thus establishing the
validity of the Arrhenius law over a wide range of temperatures. Our study
demonstrates the equivalence of diffusion rates calculated using thermodynamic
integration within the transition state theory and direct molecular-dynamics
simulations.Comment: 4 pages (revtex), two figures (postscript
Animal-Assisted Play: A Strategy for Promoting Children’s Physical Activity Play
This article explores how animal-assisted play might be used as a strategy in playwork to support children’s right to play, enrich their play experiences, encourage their physical activity play and better their health and life quality. Children’s interactions with pets or companion animals in free play or animal-assisted activities (AAA) can yield therapeutic benefits by increasing physical and mental health and well-being and also offer possibilities for more outdoor play, agency, risk-taking, fun and enjoyment, as well as high-quality play experiences. We invite playwork practitioners to consider the important role of animals in children’s lives and the potential value of animal-assisted play in creating opportunities for enriching children’s play and life quality
Collective modes of CP(3) Skyrmion crystals in quantum Hall ferromagnets
The two-dimensional electron gas in a bilayer quantum Hall system can sustain
an interlayer coherence at filling factor nu=1 even in the absence of tunneling
between the layers. This system has low-energy charged excitations which may
carry textures in real spin or pseudospin. Away from filling factor nu =1 a
finite density of these is present in the ground state of the 2DEG and forms a
crystal. Depending on the relative size of the various energy scales, such as
tunneling (Delta_SAS), Zeeman coupling (Delta_Z) or electrical bias (Delta_b),
these textured crystal states can involve spin, pseudospin, or both
intertwined. In this article, we present a comprehensive numerical study of the
collective excitations of these textured crystals using the GRPA. For the pure
spin case, at finite Zeeman coupling the state is a Skyrmion crystal with a
gapless phonon mode, and a separate Goldstone mode that arises from a broken
U(1) symmetry. At zero Zeeman coupling, we demonstrate that the constituent
Skyrmions break up, and the resulting state is a meron crystal with 4 gapless
modes. In contrast, a pure pseudospin Skyrme crystal at finite tunneling has
only the phonon mode. For Delta_SAS=0, the state evolves into a meron crystal
and supports an extra gapless U(1) mode in addition to the phonon. For a CP(3)
Skyrmion crystal, we find a U(1) gapless mode in the presence of the
symmetry-breaking fields. In addition, a second mode with a very small gap is
present in the spectrum.Comment: 16 pages and 12 eps figure
Long-Period Giant Companions to Three Compact, Multiplanet Systems
Understanding the relationship between long-period giant planets and multiple smaller short-period planets is critical for formulating a complete picture of planet formation. This work characterizes three such systems. We present Kepler-65, a system with an eccentric (e = 0.28 ± 0.07) giant planet companion discovered via radial velocities (RVs) exterior to a compact, multiply transiting system of sub-Neptune planets. We also use precision RVs to improve mass and radius constraints on two other systems with similar architectures, Kepler-25 and Kepler-68. In Kepler-68 we propose a second exterior giant planet candidate. Finally, we consider the implications of these systems for planet formation models, particularly that the moderate eccentricity in Kepler-65\u27s exterior giant planet did not disrupt its inner system
Microscopic mechanisms of thermal and driven diffusion of non rigid molecules on surfaces
The motion of molecules on solid surfaces is of interest for technological
applications such as catalysis and lubrication, but it is also a theoretical
challenge at a more fundamental level. The concept of activation barriers is
very convenient for the interpretation of experiments and as input for Monte
Carlo simulations but may become inadequate when mismatch with the substrate
and molecular vibrations are considered. We study the simplest objects
diffusing on a substrate at finite temperature , namely an adatom and a
diatomic molecule (dimer), using the Langevin approach. In the driven case, we
analyse the characteristic curves, comparing the motion for different values of
the intramolecular spacing, both for T=0 and . The mobility of the
dimer is higher than that of the monomer when the drift velocity is less than
the natural stretching frequency. The role of intramolecular excitations is
crucial in this respect. In the undriven case, the diffusive dynamics is
considered as a function of temperature. Contrary to atomic diffusion, for the
dimer it is not possible to define a single, temperature independent,
activation barrier. Our results suggest that vibrations can account for drastic
variations of the activation barrier. This reveals a complex behaviour
determined by the interplay between vibrations and a temperature dependent
intramolecular equilibrium length.Comment: 6 pages, 5 figures, Proceeding of the EMRS 2002 Conference, to be
published in Thin Solid Film
Recommended from our members
(L128) and (V247) of CXCR1 Are Critical Amino Acid Residues for G Protein Coupling and Receptor Activation
CXCR1, a classic GPCR that binds IL-8, plays a key role in neutrophil activation and migration by activating phospholipase C (PLC)β through and which generates diacylglycerol and inositol phosphates (IPs). In this study, two conserved amino acid residues of CXCR1 on the transmembrane domain (TM) 3 and TM6, (L128) and (V247), respectively, were selectively substituted with other amino acids to investigate the role of these conserved residues in CXCR1 activation. Although two selective mutants on Leu128, Leu128Ala (L128A) and Leu128Arg (L128R), demonstrated high binding affinity to IL-8, they were not capable of coupling to G proteins and consequently lost the functional response of the receptors. By contrast, among the four mutants at residue Val247 (TM6.40), replacing Val247 with Ala (V247A) and Asn (V247N) led to constitutive activation of mutant receptors when cotransfected with . The V247N mutant also constitutively activated the protein. These results indicate that L128 on TM3.43 is involved in G protein coupling and receptor activation but is unimportant for ligand binding. On the other hand, V247 on TM6.40 plays a critical role in maintaining the receptor in the inactive state, and the substitution of V247 impaired the receptor constraint and stabilized an active conformation. Functionally, there was an increase in chemotaxis in response to IL-8 in cells expressing V247A and V247N. Our findings indicate that and are critical for G protein coupling and activation of signaling effectors, providing a valuable insight into the mechanism of CXCR1 activation
- …