41 research outputs found
New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing
The Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Otztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to similar to 60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis
Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators (“potentiators” and “correctors”), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called “stabilizers”) that rescue ΔF508-CFTR activity. To design the “stabilizers”, we extended our structural ensemble-based computational protein redesign algorithm to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods
A Dynamic View of Domain-Motif Interactions
Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue
PDZ domains and their binding partners: structure, specificity, and modification
PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes
Epitope mapping of antibodies against S-tagged fusion proteins and molecular weight markers
Monoclonal antibodies against S-tagged fusion proteins expressed in pET vectors were generated and further characterized. Most pET vectors contain a 15-meric S-tag as a fusion tag for the detection of recombinant proteins. Two antibodies, G18BA3 and G18BE8, recognized this S-tag in enzyme immunoassay and Western blot. Their epitopes were mapped using peptide array technology and were confirmed to be AAKFERQHMDSPD. This corresponds to the C-terminal region of the S-tag plus additional amino acids P and D, which are also present in most available pET vectors. Amino acid substitution analysis revealed several essential residues for binding. The binding motif was therefore FExxHxDxxD for G18BA3 and AxxFExxH for G18BE8. Since some commercially available protein standards are expressed in pET vectors, G18BA3 and G18BE8 were also found to detect the ladder bands of a molecular weight marker on immunoblot analysis. Both antibodies should be highly useful for the simultaneous detection of recombinant pET vector-expressed fusion proteins and protein molecular weight standards in Western blotting, especially when chemoluminescent detection systems are used
Optimization of the process of inverted peptides (PIPE PLUS ) to screen PDZ domain ligands
International audienc
Highway to Cell: Selection of the Best Cell-Penetrating Peptide to Internalize the CFTR-Stabilizing iCAL36 Peptide
International audienceTherapeutic peptides have regained interest as they can address unmet medical needs and can be an excellent complement to pharmaceutic small molecules and other macromolecular therapeutics. Over the past decades, correctors and potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel causing cystic fibrosis (CF) when mutated, were developed to reduce the symptoms of the patients. In this context, we have previously designed a CFTR-stabilizing iCAL36 peptide able to further increase the CFTR amount in epithelial cells, thereby resulting in a higher CFTR activity. In the present study, optimization of the peptidyl inhibitor was performed by coupling five different cell-penetrating peptides (CPP), which are Tat, dTat, TatRI (retro-inverso), MPG, and Penetratin. Screening of the internalization properties of these CPP-iCAL36 peptides under different conditions (with or without serum or endocytosis inhibitors, etc.) was performed to select TatRI as the optimal CPP for iCAL36 delivery. More importantly, using this TatRI-iCAL36 peptide, we were able to reveal for the first time an additive increase in the CFTR amount in the presence of VX-445/VX-809 compared to VX-445/VX-809 treatment alone. This finding is a significant contribution to the development of CFTR-stabilizing peptides in addition to currently used treatments (small-molecule correctors or potentiators) for CF patients
Generation of an antibody against the protein phosphatase 1 inhibitor KEPI and characterization of the epitope
A monoclonal antibody against the potential tumor suppressor kinase-enhanced protein phosphatase 1 (PP1) inhibitor KEPI (PPP1R14C) was generated and characterized. Human KEPI was expressed in Escherichia coli and used to immunize Balb/c mice. Using hybridoma technology, one clone, G18AF8, was isolated producing antibodies which bound specifically to the KEPI protein in ELISA, immunoblotting and flow cytometry. The antibody was also successfully applied to stain KEPI protein in paraffin sections of human brain. The epitope was mapped using peptide array technology and confirmed as GARVFFQSPR. This corresponds to the N-terminal region of KEPI. Amino acid substitution analysis revealed that two residues, F and Q, are essential for binding. Affinity of binding was determined by competitive ELISA as 1 muM. In Western blot assays testing G18AF8 antibody on brain samples of several species, reactivity with hamster, rat and chicken samples was found, suggesting a broad homology of this KEPI epitope in vertebrates. This antibody could be used in expression studies at the protein level e.g. in tumor tissues
Generation of an antibody against the protein phosphatase 1 inhibitor KEPI and characterization of the epitope
A monoclonal antibody against the potential tumor suppressor kinase-enhanced protein phosphatase 1 (PP1) inhibitor KEPI (PPP1R14C) was generated and characterized. Human KEPI was expressed in Escherichia coli and used to immunize Balb/c mice. Using hybridoma technology, one clone, G18AF8, was isolated producing antibodies which bound specifically to the KEPI protein in ELISA, immunoblotting and flow cytometry. The antibody was also successfully applied to stain KEPI protein in paraffin sections of human brain. The epitope was mapped using peptide array technology and confirmed as GARVFFQSPR. This corresponds to the N-terminal region of KEPI. Amino acid substitution analysis revealed that two residues, F and Q, are essential for binding. Affinity of binding was determined by competitive ELISA as 1 muM. In Western blot assays testing G18AF8 antibody on brain samples of several species, reactivity with hamster, rat and chicken samples was found, suggesting a broad homology of this KEPI epitope in vertebrates. This antibody could be used in expression studies at the protein level e.g. in tumor tissues
Generation and characterization of a rat monoclonal antibody specific for PCNA.
Proliferating cell nuclear antigen (PCNA) is a homotrimeric ring-shaped protein that encircles the DNA and acts as a stationary loading platform for multiple, transiently interacting partners participating in various DNA transactions. This essential cellular component, originally characterized as a nuclear antigen of dividing cells, is evolutionary highly conserved from yeast to human. Within the eukaryotic cell, PCNA serves as a processivity factor for DNA polymerase delta and plays a key role in DNA replication, repair, cell cycle regulation, and post-replicative transactions like DNA methylation and chromatin remodelling. All these cellular processes are regulated by a complex network comprising cell cycle dependent changes in expression levels, dynamics, interactions, and localization of PCNA. Here we report the generation and characterization of the first rat monoclonal antibody (MAb) against human PCNA, designated as PCNA 16D10. We demonstrated that PCNA 16D10 MAb has high affinity and specificity and is suited for ELISA, immunoblotting, immunoprecipitation, and immunofluorescence. The characteristic punctate staining of S phase cells allows the identification of proliferating cells and the monitoring of cell cycle progression