4 research outputs found

    Upright patient positioning for gantry-free breast radiotherapy: feasibility tests using a robotic chair and specialised bras

    Get PDF
    For external beam radiotherapy using photons or particles, upright patient positioning on a rotating, robotic chair (a gantry-less system) could offer substantial cost savings. In this study, we considered the feasibility of upright breast radiotherapy using a robotic radiotherapy chair, for (i) a cohort of 9 patients who received conventional supine radiotherapy using photons for a diagnosis of primary breast cancer, plus (ii) 7 healthy volunteers, selected to have relatively large bra cup sizes. We studied: overall body positioning, arm positioning, beam access, breast reproducibility, and comfort. Amongst the healthy volunteer cohort, the impact of specialised radiotherapy bras upon inframammary skinfolds (ISF) was also determined, for upright treatment positions. In conclusion, upright body positioning for breast radiotherapy appears to be comfortable and feasible. Of the 9 patients who received conventional, supine radiotherapy (mean age 63.5 years, maximum age 90 years), 7 reported that they preferred upright positioning. Radiotherapy bras were effective in reducing/eliminating ISF for upright body positions, including for very large breasted volunteers. For upright proton radiotherapy to the breast, beam access should be straightforward, even for arms-down treatments, as en-face field directions are typically used. For photon radiotherapy, additional research is now required to investigate beam paths and whether, for certain patients, additional immobilisation will be required to keep the contralateral breast free from exposure. Future research should also investigate arm supports custom-designed for upright radiotherapy

    Upright patient positioning for gantry-free breast radiotherapy: feasibility tests using a robotic chair and specialised bras

    Get PDF
    For external beam radiotherapy using photons or particles, upright patient positioning on a rotating, robotic chair (a gantry-less system) could offer substantial cost savings. In this study, we considered the feasibility of upright breast radiotherapy using a robotic radiotherapy chair, for (i) a cohort of 9 patients who received conventional supine radiotherapy using photons for a diagnosis of primary breast cancer, plus (ii) 7 healthy volunteers, selected to have relatively large bra cup sizes. We studied: overall body positioning, arm positioning, beam access, breast reproducibility, and comfort. Amongst the healthy volunteer cohort, the impact of specialised radiotherapy bras upon inframammary skinfolds (ISF) was also determined, for upright treatment positions. In conclusion, upright body positioning for breast radiotherapy appears to be comfortable and feasible. Of the 9 patients who received conventional, supine radiotherapy (mean age 63.5 years, maximum age 90 years), 7 reported that they preferred upright positioning. Radiotherapy bras were effective in reducing/eliminating ISF for upright body positions, including for very large breasted volunteers. For upright proton radiotherapy to the breast, beam access should be straightforward, even for arms-down treatments, as en-face field directions are typically used. For photon radiotherapy, additional research is now required to investigate beam paths and whether, for certain patients, additional immobilisation will be required to keep the contralateral breast free from exposure. Future research should also investigate arm supports custom-designed for upright radiotherapy

    DataSheet_1_Upright patient positioning for gantry-free breast radiotherapy: feasibility tests using a robotic chair and specialised bras.docx

    No full text
    For external beam radiotherapy using photons or particles, upright patient positioning on a rotating, robotic chair (a gantry-less system) could offer substantial cost savings. In this study, we considered the feasibility of upright breast radiotherapy using a robotic radiotherapy chair, for (i) a cohort of 9 patients who received conventional supine radiotherapy using photons for a diagnosis of primary breast cancer, plus (ii) 7 healthy volunteers, selected to have relatively large bra cup sizes. We studied: overall body positioning, arm positioning, beam access, breast reproducibility, and comfort. Amongst the healthy volunteer cohort, the impact of specialised radiotherapy bras upon inframammary skinfolds (ISF) was also determined, for upright treatment positions. In conclusion, upright body positioning for breast radiotherapy appears to be comfortable and feasible. Of the 9 patients who received conventional, supine radiotherapy (mean age 63.5 years, maximum age 90 years), 7 reported that they preferred upright positioning. Radiotherapy bras were effective in reducing/eliminating ISF for upright body positions, including for very large breasted volunteers. For upright proton radiotherapy to the breast, beam access should be straightforward, even for arms-down treatments, as en-face field directions are typically used. For photon radiotherapy, additional research is now required to investigate beam paths and whether, for certain patients, additional immobilisation will be required to keep the contralateral breast free from exposure. Future research should also investigate arm supports custom-designed for upright radiotherapy.</p

    Comparison among four immobilization devices for whole breast irradiation with Helical Tomotherapy

    No full text
    International audiencePurpose: To evaluate the repositioning accuracy of 4 immobilization devices (ID) used for whole breast Helical Tomotherapy treatments: arm float with VacFix® (Par Scientific, Denmark), all-in-one® (AIO®) system (Orfit, Belgium), MacroCast thermoplastic mask (Macromedics, The Netherlands) and BlueBag® system with Arm-Shuttle (Elekta, Sweden).Materials and methods: Twenty four women with breast cancer with PTV including the breast/chest wall and lymph nodes were involved in this study (6 women per group). Pretreatment registration results were first collected using automatic bone registration + manual adjustment on the vertebra followed by independent registrations on different ROIs representing each treated area (axillary, mammary chain, clavicular, breast/chest wall). The differences in translations and rotations between reference registration and the above mentionned ROIs were calculated. A total of 120 MVCT images were analyzed.Results: Significant differences were found between IDs (p < 0.0001), ROIs (p = 0.0002) and the session number (p < 0.0001) on the observed shifts, when examining 3D translation vectors. 3D-vectors were significantly lower for the BlueBag® than for the VacFix® or for the AIO® (p < 0.0001), but differences were not significant compared to the mask (p = 0.674). Finally, setup margins were overall smaller for the BlueBag® than for other IDs, with values ranging from 1.53 to 1.91 mm on the mammary chain area, 4.52-6.07 mm on the clavicular area, 2.71-4.62 mm on the axillary area, and 3.39-5.10 mm on the breast.Conclusion: We demonstrated in this study that the BlueBag® combined with arm shuttle is a robust solution for breast and nodes immobilization during HT treatments
    corecore