60 research outputs found

    Origin and age of an ongoing radioactive contamination of soils near La hague reprocessing plant based on <sup>239+240</sup>Pu/<sup>238</sup>Pu and <sup>241</sup>Am/<sup>241</sup>Pu current ratios and <sup>90</sup>Sr and Ln(III) soil contents.

    Get PDF
    Nuclear reprocessing plants are sources of environmental contamination by gaseous or liquid discharges. Numerous radionuclides are of concern, with actinides and &lt;sup&gt;90&lt;/sup&gt; Sr being the most radiotoxic. Environmental radioactivity survey programs mostly use γ-spectrometry to track contaminations because γ-spectrometry is very cost effective and can be carried out on raw samples. On the other hand, the determination of β- or α-emitting radionuclides in environmental samples requires rather sophisticated analytical methods, and are thus dedicated to specific goals. However, measuring radionuclides such as Pu, Am, and Sr often provides more information about the presence of a current or prior contamination and on its origin, based on the isotopic composition of the samples. We found that the analysis of &lt;sup&gt;241&lt;/sup&gt; Pu, &lt;sup&gt;239+240&lt;/sup&gt; Pu, &lt;sup&gt;241&lt;/sup&gt; Am, and &lt;sup&gt;90&lt;/sup&gt; Sr of a few selected soil samples taken near the nuclear reprocessing plant of La Hague, France, revealed the presence of a previous environmental contamination originating from several incidents in La Hague site involving atmospheric transfer and leaks in flooded waste pits. The &lt;sup&gt;241&lt;/sup&gt; Am- &lt;sup&gt;241&lt;/sup&gt; Pu dating method indicated a contamination period prior to 1983. The presence of elevated levels of light non-radioactive lanthanides and yttrium in the soil samples confirmed the involvement of cold fuel. Our results demonstrate how long-lived actinides are likely to reveal a long-term contamination of the environment by spent fuel. Our study indicates that there is a requirement to use more sophisticated tools than γ-spectrometry when surveying the environments surrounding industrial plants for nuclear power and nuclear reprocessing with a potential for the accidental release of radioactivity into the environment

    Diffusion over a saddle with a Langevin equation

    Get PDF
    The diffusion problem over a saddle is studied using a multi-dimensional Langevin equation. An analytical solution is derived for a quadratic potential and the probability to pass over the barrier deduced. A very simple solution is given for the one dimension problem and a general scheme is shown for higher dimensions.Comment: 13 pages, use revTeX, to appear in Phys. Rev. E6

    Analysis of the Fusion Hindrance in Mass-symmetric Heavy Ion Reactions

    Full text link
    The fusion hindrance, which is also denominated by the term extra-push, is studied on mass-symmetric systems by the use of the liquid drop model with the two-center parameterization. Following the idea that the fusion hindrance exists only if the liquid drop barrier (saddle point) is located at the inner side of the contact point after overcoming the outer Coulomb barrier, the reactions in which two barriers are overlapped with each other are determined. It is shown that there are many systems where the fusion hindrance does not exist for the atomic number of projectile or target nucleus Z43Z\leq43, while for Z>43Z>43, all of the mass-symmetric reactions are fusion-hindered.Comment: 6 pages, 4 figures. to be published in Sci. in China

    Quasi-fission reactions as a probe of nuclear viscosity

    Full text link
    Fission fragment mass and angular distributions were measured from the ^{64}Ni+^{197}Au reaction at 418 MeV and 383 MeV incident energy. A detailed data analysis was performed, using the one-body dissipation theory implemented in the code HICOL. The effect of the window and the wall friction on the experimental observables was investigated. Friction stronger than one-body was also considered. The mass and angular distributions were consistent with one-body dissipation. An evaporation code DIFHEAT coupled to HICOL was developed in order to predict reaction time scales required to describe available data on pre-scission neutron multiplicities. The multiplicity data were again consistent with one-body dissipation. The cross-sections for touch, capture and quasi-fission were also obtained.Comment: 25 pages REVTeX, 3 tables, 13 figures, submitted to Phys. Rev

    In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design

    Get PDF
    International audienceThe results of preparatory experiments and the preliminary designs of a new in-gas laser ionization and spectroscopy setup, to be coupled to the Super Separator Spectrometer S3 of SPIRAL2-GANIL, are reported. Special attention is given to the development and tests to carry out a full implementation of the in-gas jet laser spectroscopy technique. Application of this novel technique to radioactive species will allow highsensitivity and enhanced-resolution laser spectroscopy studies of ground- and excited-state properties of exotic nuclei

    Search for a long lived component in the reaction U+U near the Coulomb barrier

    Get PDF
    Expérience GANILInternational audienceWe performed an experiment to search for a signature of a long living component in the collision of 238^{238}U + 238^{238}U between 6.09 and 7.35A MeV. The experiment was performed at GANIL using the spectrometer VAMOS, tuned for observing reactions with kinematics similar to fusion-fission events. Theoretical calculations indicate that if a long living component would exist for this reaction, the most probable fission channel of such a giant system would be via the emissionof quasi-lead nuclei. We detected events of such a category in the focal plane of VAMOS. These events present an excitation function growing as a function of the bombarding energy

    Exploring the stability of super heavy elements: First measurement of the fission barrier of 254No

    Get PDF
    The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier. © Owned by the authors, published by EDP Sciences, 2014

    Exploring the stability of super heavy elements: First measurement of the fission barrier of 254No

    Get PDF
    The gamma-ray multiplicity and total energy emitted by the heavy nucleus 254No have been measured at 2 different beam energies. From these measurements, the initial distributions of spin I and excitation energy E * of 254No were constructed. The distributions display a saturation in excitation energy, which allows a direct determination of the fission barrier. 254No is the heaviest shell-stabilized nucleus with a measured fission barrier

    Fission barrier of superheavy nuclei and persistence of shell effects at high spin: Cases of No 254 and Th 220

    Get PDF
    We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of No254 is measured to be Bf=6.0±0.5 MeV at spin 15 and, by extrapolation, Bf=6.6±0.9 MeV at spin 0. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for Th220 and only a lower limit of the fission barrier height can be determined: Bf(I)>8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements
    corecore