1,278 research outputs found

    Alien Registration- Boileau, Stephen D. (Madison, Somerset County)

    Get PDF
    https://digitalmaine.com/alien_docs/6781/thumbnail.jp

    Robust polarization-based quantum key distribution over collective-noise channel

    Full text link
    We present two polarization-based protocols for quantum key distribution. The protocols encode key bits in noiseless subspaces or subsystems, and so can function over a quantum channel subjected to an arbitrary degree of collective noise, as occurs, for instance, due to rotation of polarizations in an optical fiber. These protocols can be implemented using only entangled photon-pair sources, single-photon rotations, and single-photon detectors. Thus, our proposals offer practical and realistic alternatives to existing schemes for quantum key distribution over optical fibers without resorting to interferometry or two-way quantum communication, thereby circumventing, respectively, the need for high precision timing and the threat of Trojan horse attacks.Comment: Minor changes, added reference

    Новий навчальний посібник “Україна в міжнародних організаціях”

    Get PDF
    Рецензія на посібник: Макар Ю. І. Україна в міжнародних організаціях : навч. посібник / Ю. І. Макар, Б. П. Гдичинський, В. Ю. Макар, С. Д. Попик, Н. Ю. Ротар ; за ред. Ю. І. Макара. – Чернівці : Прут, 2009. – 880 с

    Higher Security Thresholds for Quantum Key Distribution by Improved Analysis of Dark Counts

    Full text link
    We discuss the potential of quantum key distribution (QKD) for long distance communication by proposing a new analysis of the errors caused by dark counts. We give sufficient conditions for a considerable improvement of the key generation rates and the security thresholds of well-known QKD protocols such as Bennett-Brassard 1984, Phoenix-Barnett-Chefles 2000, and the six-state protocol. This analysis is applicable to other QKD protocols like Bennett 1992. We examine two scenarios: a sender using a perfect single-photon source and a sender using a Poissonian source.Comment: 6 pages, 2 figures, v2: We obtained better results by using reverse reconciliation as suggested by Nicolas Gisi

    Noncommutative knot theory

    Full text link
    The classical abelian invariants of a knot are the Alexander module, which is the first homology group of the the unique infinite cyclic covering space of S^3-K, considered as a module over the (commutative) Laurent polynomial ring, and the Blanchfield linking pairing defined on this module. From the perspective of the knot group, G, these invariants reflect the structure of G^(1)/G^(2) as a module over G/G^(1) (here G^(n) is the n-th term of the derived series of G). Hence any phenomenon associated to G^(2) is invisible to abelian invariants. This paper begins the systematic study of invariants associated to solvable covering spaces of knot exteriors, in particular the study of what we call the n-th higher-order Alexander module, G^(n+1)/G^(n+2), considered as a Z[G/G^(n+1)$-module. We show that these modules share almost all of the properties of the classical Alexander module. They are torsion modules with higher-order Alexander polynomials whose degrees give lower bounds for the knot genus. The modules have presentation matrices derived either from a group presentation or from a Seifert surface. They admit higher-order linking forms exhibiting self-duality. There are applications to estimating knot genus and to detecting fibered, prime and alternating knots. There are also surprising applications to detecting symplectic structures on 4-manifolds. These modules are similar to but different from those considered by the author, Kent Orr and Peter Teichner and are special cases of the modules considered subsequently by Shelly Harvey for arbitrary 3-manifolds.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-19.abs.htm

    Experimental Quantum Communication without a Shared Reference Frame

    Get PDF
    We present an experimental realization of a robust quantum communication scheme [Phys. Rev. Lett. 93, 220501 (2004)] using pairs of photons entangled in polarization and time. Our method overcomes errors due to collective rotation of the polarization modes (e.g., birefringence in optical fiber or misalignment), is insensitive to the phase's fluctuation of the interferometer, and does not require any shared reference frame including time reference, except the need to label different photons. The practical robustness of the scheme is further shown by implementing a variation of the Bennett-Brassard 1984 quantum key distribution protocol over 1 km optical fiber.Comment: 4 pages, 4 figure

    Experimental Implementation of Discrete Time Quantum Random Walk on an NMR Quantum Information Processor

    Full text link
    We present an experimental implementation of the coined discrete time quantum walk on a square using a three qubit liquid state nuclear magnetic resonance (NMR) quantum information processor (QIP). Contrary to its classical counterpart, we observe complete interference after certain steps and a periodicity in the evolution. Complete state tomography has been performed for each of the eight steps making a full period. The results have extremely high fidelity with the expected states and show clearly the effects of quantum interference in the walk. We also show and discuss the importance of choosing a molecule with a natural Hamiltonian well suited to NMR QIP by implementing the same algorithm on a second molecule. Finally, we show experimentally that decoherence after each step makes the statistics of the quantum walk tend to that of the classical random walk.Comment: revtex4, 8 pages, 6 figures, submitted to PR
    corecore