15 research outputs found

    Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans

    Get PDF
    T cell memory relies on the generation of antigen-specific progenitors with stem-like properties. However, the identity of these progenitors has remained unclear, precluding a full understanding of the differentiation trajectories that underpin the heterogeneity of antigen-experienced T cells. We used a systematic approach guided by single-cell RNA-sequencing data to map the organizational structure of the human CD8+ memory T cell pool under physiological conditions. We identified two previously unrecognized subsets of clonally, epigenetically, functionally, phenotypically and transcriptionally distinct stem-like CD8+ memory T cells. Progenitors lacking the inhibitory receptors programmed death-1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were committed to a functional lineage, whereas progenitors expressing PD-1 and TIGIT were committed to a dysfunctional, exhausted-like lineage. Collectively, these data reveal the existence of parallel differentiation programs in the human CD8+ memory T cell pool, with potentially broad implications for the development of immunotherapies and vaccines

    Diet-Induced Obesity Impairs Outcomes and Induces Multi-Factorial Deficiencies in Effector T Cell Responses Following Anti-CTLA-4 Combinatorial Immunotherapy in Renal Tumor-Bearing Mice

    No full text
    Associations between modifiable factors and the efficacy of cancer immunotherapies remain uncertain. We found previously that diet-induced obesity (DIO) reduces the efficacy of an immunotherapy consisting of adenovirus-encoded TRAIL plus CpG oligonucleotide (AdT/CpG) in mice with renal tumors. To eliminate confounding effects of diet and determine whether outcomes could be improved in DIO mice, we evaluated AdT/CpG combined with anti-CTLA-4 in diet-matched, obese-resistant (OB-RES) versus DIO tumor-bearing mice. Therapy-treated OB-RES mice displayed effective renal tumor control and sustained CD4+ and CD8+ T cell responses. In contrast, therapy-treated DIO mice exhibited progressive tumor outgrowth and blunted T cell responses, characterized by reduced intratumoral frequencies of IFNγ+ CD4+ and CD8+ T cells. Weak effector T cell responses in therapy-treated DIO mice were accompanied by low intratumoral concentrations of the T cell chemoattractant CCL5, heightened concentrations of pro-tumorigenic GM-CSF, and impaired proliferative capacity of CD44+CD8+ T cells in tumor-draining lymph nodes. Our findings demonstrate that in lean mice with renal tumors, combining in situ T cell priming upstream of anti-CTLA-4 enhances outcomes versus anti-CTLA-4 alone. However, host obesity is associated with heightened immunotherapy resistance, characterized by multi-factorial deficiencies in effector CD4+ and CD8+ T cell responses that extend beyond the tumor microenvironment

    The Antidiabetic Agent Acarbose Improves Anti-PD-1 and Rapamycin Efficacy in Preclinical Renal Cancer

    No full text
    Although immune checkpoint inhibitors and targeted therapeutics have changed the landscape of treatment for renal cell carcinoma (RCC), most patients do not experience significant clinical benefits. Emerging preclinical studies report that nutrition-based interventions and glucose-regulating agents can improve therapeutic efficacy. However, the impact of such agents on therapeutic efficacy in metastatic kidney cancer remains unclear. Here, we examined acarbose, an alpha-glucosidase inhibitor and antidiabetic agent, in a preclinical model of metastatic kidney cancer. We found that acarbose blunted postprandial blood glucose elevations in lean, nondiabetic mice and impeded the growth of orthotopic renal tumors, an outcome that was reversed by exogenous glucose administration. Delayed renal tumor outgrowth in mice on acarbose occurred in a CD8 T cell-dependent manner. Tumors from these mice exhibited increased frequencies of CD8 T cells that retained production of IFNγ, TNFα, perforin, and granzyme B. Combining acarbose with either anti-PD-1 or the mammalian target of rapamycin inhibitor, rapamycin, significantly reduced lung metastases relative to control mice on the same therapies. Our findings in mice suggest that combining acarbose with current RCC therapeutics may improve outcomes, warranting further study to determine whether acarbose can achieve similar responses in advanced RCC patients in a safe and likely cost-effective manner

    Obesity induces limited changes to systemic and local immune profiles in treatment-naive human clear cell renal cell carcinoma.

    No full text
    Understanding the effects of obesity on the immune profile of renal cell carcinoma (RCC) patients is critical, given the rising use of immunotherapies to treat advanced disease and recent reports of differential cancer immunotherapy outcomes with obesity. Here, we evaluated multiple immune parameters at the genetic, soluble protein, and cellular levels in peripheral blood and renal tumors from treatment-naive clear cell RCC (ccRCC) subjects (n = 69), to better understand the effects of host obesity (Body Mass Index "BMI" ≥ 30 kg/m2) in the absence of immunotherapy. Tumor-free donors (n = 38) with or without obesity were used as controls. In our ccRCC cohort, increasing BMI was associated with decreased percentages of circulating activated PD-1+CD8+ T cells, CD14+CD16neg classical monocytes, and Foxp3+ regulatory T cells (Tregs). Only CD14+CD16neg classical monocytes and Tregs were reduced when obesity was examined as a categorical variable. Obesity did not alter the percentages of circulating IFNγ+ CD8 T cells or IFNγ+, IL-4+, or IL-17A+ CD4 T cells in ccRCC subjects. Of 38 plasma proteins analyzed, six (CCL3, IL-1β, IL-1RA, IL-10, IL-17, and TNFα) were upregulated specifically in ccRCC subjects with obesity versus tumor-free controls with obesity. IGFBP-1 was uniquely decreased in ccRCC subjects with obesity versus non-obese ccRCC subjects. Immunogenetic profiling of ccRCC tumors revealed that 93% of examined genes were equivalently expressed and no changes in cell type scores were found in stage-matched tumors from obesity category II/III versus normal weight (BMI ≥ 35 kg/m2 versus 18.5-24.9 kg/m2, respectively) subjects. Intratumoral PLGF and VEGF-A proteins were elevated in ccRCC subjects with obesity. Thus, in ccRCC patients with localized disease, obesity is not associated with widespread detrimental alterations in systemic or intratumoral immune profiles. The effects of combined obesity and immunotherapy administration on immune parameters remains to be determined

    MEK inhibition reprograms CD8 + T lymphocytes into memory stem cells with potent antitumor effects

    No full text
    Regenerative stem cell-like memory (TSCM) CD8+ T cells persist longer and produce stronger effector functions. We found that MEK1/2 inhibition (MEKi) induces TSCM that have naive phenotype with self-renewability, enhanced multipotency and proliferative capacity. This is achieved by delaying cell division and enhancing mitochondrial biogenesis and fatty acid oxidation, without affecting T cell receptor-mediated activation. DNA methylation profiling revealed that MEKi-induced TSCM cells exhibited plasticity and loci-specific profiles similar to bona fide TSCM isolated from healthy donors, with intermediate characteristics compared to naive and central memory T cells. Ex vivo, antigenic rechallenge of MEKi-treated CD8+ T cells showed stronger recall responses. This strategy generated T cells with higher efficacy for adoptive cell therapy. Moreover, MEKi treatment of tumor-bearing mice also showed strong immune-mediated antitumor effects. In conclusion, we show that MEKi leads to CD8+ T cell reprogramming into TSCM that acts as a reservoir for effector T cells with potent therapeutic characteristics

    Beta cell-specific CD8+ T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes.

    No full text
    The pool of beta cell-specific CD8+ T cells in type 1 diabetes (T1D) sustains an autoreactive potential despite having access to a constant source of antigen. To investigate the long-lived nature of these cells, we established a DNA methylation-based T cell 'multipotency index' and found that beta cell-specific CD8+ T cells retained a stem-like epigenetic multipotency score. Single-cell assay for transposase-accessible chromatin using sequencing confirmed the coexistence of naive and effector-associated epigenetic programs in individual beta cell-specific CD8+ T cells. Assessment of beta cell-specific CD8+ T cell anatomical distribution and the establishment of stem-associated epigenetic programs revealed that self-reactive CD8+ T cells isolated from murine lymphoid tissue retained developmentally plastic phenotypic and epigenetic profiles relative to the same cells isolated from the pancreas. Collectively, these data provide new insight into the longevity of beta cell-specific CD8+ T cell responses and document the use of this methylation-based multipotency index for investigating human and mouse CD8+ T cell differentiation

    Obesity diminishes response to PD-1-based immunotherapies in renal cancer

    No full text
    Background Obesity is a major risk factor for renal cancer, yet our understanding of its effects on antitumor immunity and immunotherapy outcomes remains incomplete. Deciphering these associations is critical, given the growing clinical use of immune checkpoint inhibitors for metastatic disease and mounting evidence for an obesity paradox in the context of cancer immunotherapies, wherein obese patients with cancer have improved outcomes.Methods We investigated associations between host obesity and anti-programmed cell death (PD-1)-based outcomes in both renal cell carcinoma (RCC) subjects and orthotopic murine renal tumors. Overall survival (OS) and progression-free survival (PFS) were determined for advanced RCC subjects receiving standard of care anti-PD-1 who had ≥6 months of follow-up from treatment initiation (n=73). Renal tumor tissues were collected from treatment-naive subjects categorized as obese (body mass index, ‘BMI’ ≥30 kg/m2) or non-obese (BMI <30 kg/m2) undergoing partial or full nephrectomy (n=19) then used to evaluate the frequency and phenotype of intratumoral CD8+ T cells, including PD-1 status, by flow cytometry. In mice, antitumor immunity and excised renal tumor weights were evaluated ±administration of a combinatorial anti-PD-1 therapy. For a subset of murine renal tumors, immunophenotyping was performed by flow cytometry and immunogenetic profiles were evaluated via nanoString.Results With obesity, RCC patients receiving anti-PD-1 administration exhibited shorter PFS (p=0.0448) and OS (p=0.0288). Treatment-naive renal cancer subjects had decreased frequencies of tumor-infiltrating PD-1highCD8+ T cells, a finding recapitulated in our murine model. Following anti-PD-1-based immunotherapy, both lean and obese mice possessed distinct populations of treatment responders versus non-responders; however, obesity reduced the frequency of treatment responders (73% lean vs 44% obese). Tumors from lean and obese treatment responders displayed similar immunogenetic profiles, robust infiltration by PD-1int interferon (IFN)γ+CD8+ T cells and reduced myeloid-derived suppressor cells (MDSC), yielding favorable CD44+CD8+ T cell to MDSC ratios. Neutralizing interleukin (IL)-1β in obese mice improved treatment response rates to 58% and reduced MDSC accumulation in tumors.Conclusions We find that obesity is associated with diminished efficacy of anti-PD-1-based therapies in renal cancer, due in part to increased inflammatory IL-1β levels, highlighting the need for continued study of this critical issue
    corecore