198 research outputs found

    Target mass number dependence of subthreshold antiproton production in proton-, deuteron- and alpha-particle-induced reactions

    Full text link
    Data from KEK on subthreshold \bar{\mrm{p}} as well as on π±\pi^\pm and \mrm{K}^\pm production in proton-, deuteron- and α\alpha-induced reactions at energies between 2.0 and 12.0 A GeV for C, Cu and Pb targets are described within a unified approach. We use a model which considers a nuclear reaction as an incoherent sum over collisions of varying numbers of projectile and target nucleons. It samples complete events and thus allows for the simultaneous consideration of all final particles including the decay products of the nuclear residues. The enormous enhancement of the \bar{\mrm{p}} cross section, as well as the moderate increase of meson production in deuteron and α\alpha induced compared to proton-induced reactions, is well reproduced for all target nuclei. In our approach, the observed enhancement near the production threshold is mainly due to the contributions from the interactions of few-nucleon clusters by simultaneously considering fragmentation processes of the nuclear residues. The ability of the model to reproduce the target mass dependence may be considered as a further proof of the validity of the cluster concept.Comment: 9 pages, 4 figure

    Textural variations in Neogene pelagic carbonate ooze at DSDP Site 593, southern Tasman Sea, and their paleoceanographic implications

    Get PDF
    Changes in Neogene sediment texture in pelagic carbonate-rich oozes on the Challenger Plateau, southern Tasman Sea, are used to infer changes in depositional paleocurrent velocities. The most obvious record of textural change is in the mud:sand ratio. Increases in the sand content are inferred to indicate a general up-core trend towards increasing winnowing of sediments resulting from increasing flow velocity of Southern Component Intermediate Water (SCIW), the forerunner of Antarctic Intermediate Water. In particular, the intervals c. 19-14.5 Ma, c. 9.5-8 Ma, and after 5 Ma are suggested to be times of increased SCIW velocity and strong sediment winnowing. Within the mud fraction, the fine silt to coarse clay sizes from 15.6 to 2 µm make the greatest contribution to the sediments and are composed of nannofossil plates. During extreme winnowing events it is the fine silt to very coarse clay material (13-3 µm) within this range that is preferentially removed, suggesting the 10 µm cohesive silt boundary reported for siliciclastic sediments does not apply to calcitic skeletal grains. The winnowed sediment comprises coccolithophore placoliths and spheres, represented by a mode at 4-7 µm. Further support for seafloor winnowing is gained from the presence in Hole 593 of a condensed sedimentary section from c. 18 to 14 Ma where the sand content increases to c. 20% of the bulk sample. Associated with the condensed section is a 6 m thick orange unit representing sediments subjected to particularly oxygen-rich, late early to early middle Miocene SCIW. Together these are inferred to indicate increased SCIW velocity resulting in winnowed sediment associated with faster arrival of oxygen-rich surface water subducted to form SCIW. Glacial development of Antarctica has been recorded from many deep-sea sites, with extreme glacials providing the mechanism to increase watermass flow. Miocene glacial zones Mi1b-Mi6 are identified in an associated oxygen isotope record from Hole 593, and correspond with times of particularly invigorated paleocirculation, bottom winnowing, and sediment textural changes

    HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment

    Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2

    Get PDF
    INTRODUCTION: Murine microglia expressing the Alzheimer's disease-linked TREM2R47H mutation display variable decrease in phagocytosis, while impaired phagocytosis is reported following loss of TREM2. However, no data exist on TREM2+/R47H human microglia. Therefore, we created human pluripotent stem cell (hPSC) monocytes and transdifferentiated microglia-like cells (tMGs) to examine the effect of the TREM2+/R47H mutation and loss of TREM2 on phagocytosis. METHODS: We generated isogenic TREM2+/R47H, TREM2+/-, and TREM2-/- hPSCs using CRISPR/Cas9. Following differentiation to monocytes and tMGs, we studied the uptake of Escherichia coli fragments and analyzed amyloid plaque clearance from cryosections of APP/PS1+/- mouse brains. RESULTS: We demonstrated that tMGs resemble cultured human microglia. TREM2+/- and TREM2-/- hPSC monocytes and tMGs phagocytosed significantly less E. coli fragments and cleared less amyloid plaques than wild-type hPSC progeny, with no difference for TREM2+/R47H progeny. DISCUSSION: In vitro phagocytosis of hPSC monocytes and tMGs was not affected by the TREM2+/R47H mutation but was significantly impaired in TREM2+/- and TREM2-/- progeny

    Mth10b, a Unique Member of the Sac10b Family, Does Not Bind Nucleic Acid

    Get PDF
    The Sac10b protein family is regarded as a group of nucleic acid-binding proteins that are highly conserved and widely distributed within archaea. All reported members of this family are basic proteins that exist as homodimers in solution and bind to DNA and/or RNA without apparent sequence specificity in vitro. Here, we reported a unique member of the family, Mth10b from Methanobacterium thermoautotrophicum ΔH, whose amino acid sequence shares high homology with other Sac10b family proteins. However, unlike those proteins, Mth10b is an acidic protein; its potential isoelectric point is only 4.56, which is inconsistent with the characteristics of a nucleic acid-binding protein. In this study, Mth10b was expressed in Escherichia coli and purified using a three-column chromatography purification procedure. Biochemical characterization indicated that Mth10b should be similar to typical Sac10b family proteins with respect to its secondary and tertiary structure and in its preferred oligomeric forms. However, an electrophoretic mobility shift analysis (EMSA) showed that neither DNA nor RNA bound to Mth10b in vitro, indicating that either Mth10b likely has a physiological function that is distinct from those of other Sac10b family members or nucleic acid-binding ability may not be a fundamental factor to the actual function of the Sac10b family

    Molecular Mechanism Underlying the Interaction of Typical Sac10b Family Proteins with DNA

    Get PDF
    The Sac10b protein family is regarded as a family of DNA-binding proteins that is highly conserved and widely distributed within the archaea. Sac10b family members are typically small basic dimeric proteins that bind to DNA with cooperativity and no sequence specificity and are capable of constraining DNA negative supercoils, protecting DNA from Dnase I digestion, and do not compact DNA obviously. However, a detailed understanding of the structural basis of the interaction of Sac10b family proteins with DNA is still lacking. Here, we determined the crystal structure of Mth10b, an atypical member of the Sac10b family from Methanobacterium thermoautotrophicum ΔH, at 2.2 Å. Unlike typical Sac10b family proteins, Mth10b is an acidic protein and binds to neither DNA nor RNA. The overall structure of Mth10b displays high similarity to its homologs, but three pairs of conserved positively charged residues located at the presumed DNA-binding surface are substituted by non-charged residues in Mth10b. Through amino acids interchanges, the DNA-binding ability of Mth10b was restored successfully, whereas the DNA-binding ability of Sso10b, a typical Sac10b family member, was weakened greatly. Based on these results, we propose a model describing the molecular mechanism underlying the interactions of typical Sac10b family proteins with DNA that explains all the characteristics of the interactions between typical Sac10b family members and DNA

    Induction of Neuronal Death by Microglial AGE-Albumin: Implications for Alzheimer’s Disease

    Get PDF
    Advanced glycation end products (AGEs) have long been considered as potent molecules promoting neuronal cell death and contributing to neurodegenerative disorders such as Alzheimer’s disease (AD). In this study, we demonstrate that AGE-albumin, the most abundant AGE product in human AD brains, is synthesized in activated microglial cells and secreted into the extracellular space. The rate of AGE-albumin synthesis in human microglial cells is markedly increased by amyloid-β exposure and oxidative stress. Exogenous AGE-albumin upregulates the receptor protein for AGE (RAGE) and augments calcium influx, leading to apoptosis of human primary neurons. In animal experiments, soluble RAGE (sRAGE), pyridoxamine or ALT-711 prevented Aβ-induced neuronal death in rat brains. Collectively, these results provide evidence for a new mechanism by which microglial cells promote death of neuronal cells through synthesis and secretion of AGE-albumin, thereby likely contributing to neurodegenerative diseases such as AD

    Insights into Eyestalk Ablation Mechanism to Induce Ovarian Maturation in the Black Tiger Shrimp

    Get PDF
    Eyestalk ablation is commonly practiced in crustacean to induce ovarian maturation in captivity. The molecular mechanism of the ablation has not been well understood, preventing a search for alternative measures to induce ovarian maturation in aquaculture. This is the first study to employ cDNA microarray to examine effects of eyestalk ablation at the transcriptomic level and pathway mapping analysis to identify potentially affected biological pathways in the black tiger shrimp (Penaeus monodon). Microarray analysis comparing between gene expression levels of ovaries from eyestalk-intact and eyestalk-ablated brooders revealed 682 differentially expressed transcripts. Based on Hierarchical clustering of gene expression patterns, Gene Ontology annotation, and relevant functions of these differentially expressed genes, several gene groups were further examined by pathway mapping analysis. Reverse-transcriptase quantitative PCR analysis for some representative transcripts confirmed microarray data. Known reproductive genes involved in vitellogenesis were dramatically increased during the ablation. Besides these transcripts expected to be induced by the ablation, transcripts whose functions involved in electron transfer mechanism, immune responses and calcium signal transduction were significantly altered following the ablation. Pathway mapping analysis revealed that the activation of gonadotropin-releasing hormone signaling, calcium signaling, and progesterone-mediated oocyte maturation pathways were putatively crucial to ovarian maturation induced by the ablation. These findings shed light on several possible molecular mechanisms of the eyestalk ablation effect and allow more focused investigation for an ultimate goal of finding alternative methods to replace the undesirable practice of the eyestalk ablation in the future
    corecore