162 research outputs found

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675

    Modern Genomic Tools for Pigeonpea Improvement: Status and Prospects

    Get PDF
    Pigeonpea owing to its ability to sustain harsh environment and limited input/water requirement remains an excellent remunerative crop in the face of increasing climatic adversities. With nearly 70% share in global pigeonpea production, India is the leading pigeonpea producing country. Since the mid-1900s, constant research efforts directed to improve yield and resistance levels of pigeonpea have resulted in the development and deployment of several commercially accepted cultivars in India, accommodating into diverse agro-climatic zones. However, the crop productivity needs incremental improvements in order to meet the growing nutritional demands, especially in developing countries like India where pigeonpea forms a dominant part of vegetarian diet. Empowering crop improvement strategies with genomic tool kit is imperative to attain the project gains in crop yield. In the context, adoption of next-generation sequencing (NGS) technology has helped establish a wide range of genomic resources to support pigeonpea breeding, and the existing molecular tool kit includes genome-wide genetic markers, transcriptome/genome assemblies, and candidate genes/QTLs for target traits. Similarly, availability of whole mitochondrial genome sequence and derived DNA markers is immensely relevant in order to furthering the understanding of cytoplasmic male sterility (CMS) system and hybrid breeding. This chapter covers the progress of developing modern genomic resources in pigeonpea and highlights their vital role in designing future crop breeding schemes

    Risk reduction through community-based monitoring:the vigías of Tungurahua, Ecuador

    Get PDF
    Since 2000, a network of volunteers known as vigías has been engaged in community-based volcano monitoring, which involves local citizens in the collection of scientific data, around volcán Tungurahua, Ecuador. This paper provides the first detailed description and analysis of this well-established initiative, drawing implications for volcanic risk reduction elsewhere. Based on 32 semi-structured interviews and other qualitative data collected in June and July 2013 with institutional actors and with vigías themselves, the paper documents the origins and development of the network, identifies factors that have sustained it, and analyses the ways in which it contributes to disaster risk reduction. Importantly, the case highlights how this community-based network performs multiple functions in reducing volcanic risk. The vigías network functions simultaneously as a source of observational data for scientists; as a communication channel for increasing community awareness, understanding of hazard processes and for enhancing preparedness; and as an early warning system for civil protection. Less tangible benefits with nonetheless material consequences include enhanced social capital – through the relationships and capabilities that are fostered – and improved trust between partners. Establishing trust-based relationships between citizens, the vigías, scientists and civil protection authorities is one important factor in the effectiveness and resilience of the network. Other factors discussed in the paper that have contributed to the longevity of the network include the motivations of the vigías, a clear and regular communication protocol, persistent volcanic activity, the efforts of key individuals, and examples of successful risk reduction attributable to the activities of the network. Lessons that can be learned about the potential of community-based monitoring for disaster risk reduction in other contexts are identified, including what the case tells us about the conditions that can affect the effectiveness of such initiatives and their resilience to changing circumstances

    Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.)

    Get PDF
    Single feature polymorphisms (SFPs) are microarray-based molecular markers that are detected by hybridization of DNA or cRNA to oligonucleotide probes. With an objective to identify the potential polymorphic markers for drought tolerance in pigeonpea [Cajanus cajan (L.) Millspaugh], an important legume crop for the semi-arid tropics but deficient in genomic resources, Affymetrix Genome Arrays of soybean (Glycine max), a closely related species of pigeonpea were used on cRNA of six parental genotypes of three mapping populations of pigeonpea segregating for agronomic traits like drought tolerance and pod borer (Helicoverpa armigiera) resistance. By using robustified projection pursuit method on 15 pair-wise comparisons for the six parental genotypes, 5,692 SFPs were identified. Number of SFPs varied from 780 (ICPL 8755 × ICPL 227) to 854 (ICPL 151 × ICPL 87) per parental combination of the mapping populations. Randomly selected 179 SFPs were used for validation by Sanger sequencing and good quality sequence data were obtained for 99 genes of which 75 genes showed sequence polymorphisms. While associating the sequence polymorphisms with SFPs detected, true positives were observed for 52.6% SFPs detected. In terms of parental combinations of the mapping populations, occurrence of true positives was 34.48% for ICPL 151 × ICPL 87, 41.86% for ICPL 8755 × ICPL 227, and 81.58% for ICP 28 × ICPW 94. In addition, a set of 139 candidate genes that may be associated with drought tolerance has been identified based on gene ontology analysis of the homologous pigeonpea genes to the soybean genes that detected SFPs between the parents of the mapping populations segregating for drought tolerance

    Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)

    Get PDF
    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in the arid and semi-arid regions of the world. Drought is one of the major constraints leading up to 50 % production losses in chickpea. In order to dissect the complex nature of drought tolerance and to use genomics tools for enhancing yield of chickpea under drought conditions, two mapping populations—ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261) segregating for drought tolerance-related root traits were phenotyped for a total of 20 drought component traits in 1–7 seasons at 1–5 locations in India. Individual genetic maps comprising 241 loci and 168 loci for ICCRIL03 and ICCRIL04, respectively, and a consensus genetic map comprising 352 loci were constructed (http://cmap.icrisat.ac.in/cmap/sm/cp/varshney/). Analysis of extensive genotypic and precise phenotypic data revealed 45 robust main-effect QTLs (M-QTLs) explaining up to 58.20 % phenotypic variation and 973 epistatic QTLs (E-QTLs) explaining up to 92.19 % phenotypic variation for several target traits. Nine QTL clusters containing QTLs for several drought tolerance traits have been identified that can be targeted for molecular breeding. Among these clusters, one cluster harboring 48 % robust M-QTLs for 12 traits and explaining about 58.20 % phenotypic variation present on CaLG04 has been referred as “QTL-hotspot”. This genomic region contains seven SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, TR11, GA24 and STMS11). Introgression of this region into elite cultivars is expected to enhance drought tolerance in chickpea

    Wide Crossing Technology for Pigeonpea Improvement

    Get PDF
    Pigeonpea (Cajanus cajan Millsp,) has ample genetic and genomic information now. It is endowed with rich germplasm in different gene pools. One of the easiest material to use in those are in the primary gene pool, which are closely related to cultivated pigeonpea. It is observed that species placed beyond the primary gene pool are a rich source of genetic variation. They contribute beneficial traits to pigeonpea such as pest or disease resistance, resistance to abiotic stresses, cytoplasmic male sterile systems (CMS) leading to yield improvement, and some novel traits such as homozygous pigeonpea lines. To effectively utilize the immense variation present in the secondary, tertiary, and quaternary gene pool of pigeonpea, a thorough knowledge of crossability and concerted effort is essential

    Genetic Patterns of Domestication in Pigeonpea (Cajanus cajan (L.) Millsp.) and Wild Cajanus Relatives

    Get PDF
    Pigeonpea (Cajanus cajan) is an annual or short-lived perennial food legume of acute regional importance, providing significant protein to the human diet in less developed regions of Asia and Africa. Due to its narrow genetic base, pigeonpea improvement is increasingly reliant on introgression of valuable traits from wild forms, a practice that would benefit from knowledge of its domestication history and relationships to wild species. Here we use 752 single nucleotide polymorphisms (SNPs) derived from 670 low copy orthologous genes to clarify the evolutionary history of pigeonpea (79 accessions) and its wild relatives (31 accessions). We identified three well-supported lineages that are geographically clustered and congruent with previous nuclear and plastid sequence-based phylogenies. Among all species analyzed Cajanus cajanifolius is the most probable progenitor of cultivated pigeonpea. Multiple lines of evidence suggest recent gene flow between cultivated and non-cultivated forms, as well as historical gene flow between diverged but sympatric species. Evidence supports that primary domestication occurred in India, with a second and more recent nested population bottleneck focused in tropical regions that is the likely consequence of pigeonpea breeding. We find abundant allelic variation and genetic diversity among the wild relatives, with the exception of wild species from Australia for which we report a third bottleneck unrelated to domestication within India. Domesticated C. cajan possess 75% less allelic diversity than the progenitor clade of wild Indian species, indicating a severe “domestication bottleneck” during pigeonpea domestication

    Outcomes of obstructed abdominal wall hernia: results from the UK national small bowel obstruction audit

    Get PDF
    Background: Abdominal wall hernia is a common surgical condition. Patients may present in an emergency with bowel obstruction, incarceration or strangulation. Small bowel obstruction (SBO) is a serious surgical condition associated with significant morbidity. The aim of this study was to describe current management and outcomes of patients with obstructed hernia in the UK as identified in the National Audit of Small Bowel Obstruction (NASBO). Methods: NASBO collated data on adults treated for SBO at 131 UK hospitals between January and March 2017. Those with obstruction due to abdominal wall hernia were included in this study. Demographics, co-morbidity, imaging, operative treatment, and in-hospital outcomes were recorded. Modelling for factors associated with mortality and complications was undertaken using Cox proportional hazards and multivariable regression modelling. Results: NASBO included 2341 patients, of whom 415 (17·7 per cent) had SBO due to hernia. Surgery was performed in 312 (75·2 per cent) of the 415 patients; small bowel resection was required in 198 (63·5 per cent) of these operations. Non-operative management was reported in 35 (54 per cent) of 65 patients with a parastomal hernia and in 34 (32·1 per cent) of 106 patients with an incisional hernia. The in-hospital mortality rate was 9·4 per cent (39 of 415), and was highest in patients with a groin hernia (11·1 per cent, 17 of 153). Complications were common, including lower respiratory tract infection in 16·3 per cent of patients with a groin hernia. Increased age was associated with an increased risk of death (hazard ratio 1·05, 95 per cent c.i. 1·01 to 1·10; P = 0·009) and complications (odds ratio 1·05, 95 per cent c.i. 1·02 to 1·09; P = 0·001). Conclusion: NASBO has highlighted poor outcomes for patients with SBO due to hernia, highlighting the need for quality improvement initiatives in this group
    corecore