1,496 research outputs found

    Finite-Temperature Gluon Condensate with Renormalization Group Flow Equations

    Get PDF
    Within a self-consistent proper-time Renormalization Group (RG) approach we investigate an effective QCD trace anomaly realization with dilatons and determine the finite-temperature behavior of the gluon condensate. Fixing the effective model at vanishing temperature to the glueball mass and the bag constant a possible gluonic phase transition is explored in detail. Within the RG framework the full non-truncated dilaton potential analysis is compared with a truncated potential version.Comment: 22 pages, 11 figures, LaTeX2e; revised version accepted for publication in Phys. Rev.

    Model of molecular bonding based on the Bohr-Sommerfeld picture of atoms

    Get PDF
    We develop a model of molecular binding based on the Bohr-Sommerfeld description of atoms together with a constraint taken from conventional quantum mechanics. The model can describe the binding energy curves of H2, H3 and other molecules with striking accuracy. Our approach treats electrons as point particles with positions determined by extrema of an algebraic energy function. Our constrained model provides a physically appealing, accurate description of multi-electron chemical bonds.Comment: 5 pages, 7 figures, to appear in Physics Letters

    Electron correlations in two-dimensional small quantum dots

    Full text link
    We consider circular and elliptic quantum dots with parabolic external confinement, containing 0 - 22 electrons and with values of r_s in the range 0 < r_s < 3. We perform restricted and unrestricted Hartree-Fock calculations, and further take into account electron correlations using second-order perturbation theory. We demonstrate that in many cases correlations qualitatively change the spin structure of the ground state from that obtained under Hartree-Fock and spin-density-functional calculations. In some cases the correlation effects destroy Hund's rule. We also demonstrate that the correlations destroy static spin-density waves observed in Hartree-Fock and spin-density-functional calculations.Comment: 11 pages, 9 figures. This replacement contains new content. Results have been recalculated for dots with zero effective thickness (true 2D). For 6 electrons, results have been compared with configuration interaction results from the literatur

    The Friedrichs-Model with fermion-boson couplings II

    Get PDF
    In this work we present a formal solution of the extended version of the Friedrichs Model. The Hamiltonian consists of discrete and continuum bosonic states, which are coupled to fermions. The simultaneous treatment of the couplings of the fermions with the discrete and continuous sectors of the bosonic degrees of freedom leads to a system of coupled equations, whose solutions are found by applying standard methods of representation of bound and resonant states.Comment: 13 page

    A simple and surprisingly accurate approach to the chemical bond obtained from dimensional scaling

    Get PDF
    We present a new dimensional scaling transformation of the Schrodinger equation for the two electron bond. This yields, for the first time, a good description of the two electron bond via D-scaling. There also emerges, in the large-D limit, an intuitively appealing semiclassical picture, akin to a molecular model proposed by Niels Bohr in 1913. In this limit, the electrons are confined to specific orbits in the scaled space, yet the uncertainty principle is maintained because the scaling leaves invariant the position-momentum commutator. A first-order perturbation correction, proportional to 1/D, substantially improves the agreement with the exact ground state potential energy curve. The present treatment is very simple mathematically, yet provides a strikingly accurate description of the potential energy curves for the lowest singlet, triplet and excited states of H_2. We find the modified D-scaling method also gives good results for other molecules. It can be combined advantageously with Hartree-Fock and other conventional methods.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Letter

    Effects due to Resonant and Continuum States on the Neutrino-Nucleus Cross Section

    Full text link
    Estimates of the neutrino-nucleus cross section, for the charged-current process nu+208Pb-> e+208Bi, are presented. The nuclear structure calculations have been performed by considering bound, resonant, and continuum states in the single-particle basis used to construct correlated proton-particle neutron-hole configurations. The observed features of the spectrum of 208Bi have been reproduced, as accurately as possible, by diagonalizing a phenomenological multipole-multipole interaction. Calculations of the cross section, for values of q 200 $ MeV, were performed, and the dependence of the results upon the choice of the residual proton-neutron interaction was investigated. It is found that the inclusion of resonant states in the calculation of the nuclear wave functions increases the neutrino-nucleus cross section, and that the contribution of the continuum is negligible.Comment: 15 pages, 6 figures, 2 tables, 39 references. submitted to Physical Review

    Two-proton radioactivity and three-body decay. IV. Connection to quasiclassical formulation

    Full text link
    We derive quasiclassical expressions for the three-body decay width and define the ``preexponential'' coefficients for them. The derivation is based on the integral formulae for the three-body width obtained in the semianalytical approach with simplified three-body Hamiltonian [L.V. Grigorenko and M.V.\ Zhukov, arXiv:0704.0920v1]. The model is applied to the decays of the first excited 3/2−3/2^{-} state of 17^{17}Ne and 3/2−3/2^{-} ground state of 45^{45}Fe. Various qualitative aspects of the model and relations with the other simplified approaches to the three-body decays are discussed.Comment: 9 Pages, 2 figure

    Nuclear shape dependence of Gamow-Teller distributions in neutron-deficient Pb isotopes

    Get PDF
    We study Gamow-Teller strength distributions in the neutron-deficient even isotopes (184-194)Pb in a search for signatures of deformation. The microscopic formalism used is based on a deformed quasiparticle random phase approximation (QRPA) approach, which involves a self-consistent quasiparticle deformed Skyrme Hartree-Fock (HF) basis and residual spin-isospin forces in both the particle-hole and particle-particle channels. By analyzing the sensitivity of the Gamow-Teller strength distributions to the various ingredients in the formalism, we conclude that the beta-decay of these isotopes could be a useful tool to look for fingerprints of nuclear deformation.Comment: 20 pages, 11 figures. To be published in Physical Review
    • 

    corecore