1,019 research outputs found

    The Effects of Fish Trap Mesh Size on Reef Fish Catch off Southeastern Florida

    Get PDF
    Catch and mesh selectivity of wire-meshed fish traps were tested for eleven different mesh sizes ranging from 13 X 13 mm (0.5 x 0.5") to 76 x 152 mm (3 X 6"). A total of 1,810 fish (757 kg) representing 85 species and 28 families were captured during 330 trap hauls off southeastern Florida from December 1986 to July 1988. Mesh size significantly affected catches. The 1.5" hexagonal mesh caught the most fish by number, weight, and value. Catches tended to decline as meshes got smaller or larger. Individual fish size increased with larger meshes. Laboratory mesh retention experiments showed relationships between mesh shape and size and individual retention for snapper (Lutjanidae), grouper (Serranidae), jack (Carangidae), porgy (Sparidae), and surgeonfish (Acanthuridae). These relationships may be used to predict the effect of mesh sizes on catch rates. Because mesh size and shape greatly influenced catchability, regulating mesh size may provide a useful basis for managing the commercial trap fishery

    The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly

    Get PDF
    Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre- 60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interac- tions between the 5′ and 3′ ends of the 25S, an essential pre-requisite for subsequent pre- 60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation

    Pol5 is required for recycling of small subunit biogenesis factors and for formation of the peptide exit tunnel of the large ribosomal subunit

    Get PDF
    More than 200 assembly factors (AFs) are required for the production of ribosomes in yeast. The step-wise association and dissociation of these AFs with the pre-ribosomal subunits occurs in a hierarchical manner to ensure correct maturation of the prerRNAs and assembly of the ribosomal proteins. Although decades of research have provided a wealth of insights into the functions of many AFs, others remain poorly characterized. Pol5 was initially classified with B-type DNA polymerases, however, several lines of evidence indicate the involvement of this protein in ribosome assembly. Here, we show that depletion of Pol5 affects the processing of pre-rRNAs destined for the both the large and small subunits. Furthermore, we identify binding sites for Pol5 in the 5' external transcribed spacer and within domain III of the 25S rRNA sequence. Consistent with this, we reveal that Pol5 is required for recruitment of ribosomal proteins that form the polypeptide exit tunnel in the LSU and that depletion of Pol5 impairs the release of 5' ETS fragments from early pre-40S particles. The dual functions of Pol5 in 60S assembly and recycling of pre-40S AFs suggest that this factor could contribute to ensuring the stoichiometric production of ribosomal subunits

    OLA! A Scenario-Based Approach to Enhance Open Learning Through Accessibility

    Get PDF
    Open Educational Resources (OER) and Massive Open Online Courses (MOOC) have not developed with an inherent capacity to attend to the needs of disabled students. In our research, we aim to understand the social, contextual and organisational issues behind these inadequacies. Through this, interventions and best practices can be developed to improve the situation

    The role of marine reserves in achieving sustainable fisheries (One contribution of 15 to a Theme Issue 'Fisheries: a Future?')

    Get PDF
    Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it

    An investigation into the perspectives of providers and learners on MOOC accessibility

    Get PDF
    An effective open eLearning environment should consider the target learner’s abilities, learning goals, where learning takes place, and which specific device(s) the learner uses. MOOC platforms struggle to take these factors into account and typically are not accessible, inhibiting access to environments that are intended to be open to all. A series of research initiatives are described that are intended to benefit MOOC providers in achieving greater accessibility and disabled learners to improve their lifelong learning and re-skilling. In this paper, we first outline the rationale, the research questions, and the methodology. The research approach includes interviews, online surveys and a MOOC accessibility audit; we also include factors such the risk management of the research programme and ethical considerations when conducting research with vulnerable learners. Preliminary results are presented from interviews with providers and experts and from analysis of surveys of learners. Finally, we outline the future research opportunities. This paper is framed within the context of the Doctoral Consortium organised at the TEEM'17 conference

    Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast

    Get PDF
    The guided entry of tail-anchored proteins (GET) pathway assists in the posttranslational delivery of tail-anchored proteins, containing a single C-terminal transmembrane domain, to the ER. Here we uncover how the yeast GET pathway component Get4/5 facilitates capture of tail-anchored proteins by Sgt2, which interacts with tail-anchors and hands them over to the targeting component Get3. Get4/5 binds directly and with high affinity to ribosomes, positions Sgt2 close to the ribosomal tunnel exit, and facilitates the capture of tail-anchored proteins by Sgt2. The contact sites of Get4/5 on the ribosome overlap with those of SRP, the factor mediating cotranslational ER-targeting. Exposure of internal transmembrane domains at the tunnel exit induces high-affinity ribosome binding of SRP, which in turn prevents ribosome binding of Get4/5. In this way, the position of a transmembrane domain within nascent ER-targeted proteins mediates partitioning into either the GET or SRP pathway directly at the ribosomal tunnel exit

    RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and a novel mRNA decay pathway

    Get PDF
    mRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5' to 3' exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNAcontrolled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one ofwhich is conserved fromyeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting KAP120 or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplasmic decay, uncovering a cytoplasmic decay pathway that initiates in the nucleus.MostmRNAs are degraded by both pathways - the ratio between them represents a full spectrum. Importantly, Xrn1 shuttling is required for proper responses to environmental changes, e.g., fluctuating temperatures, involving proper changes in mRNA abundance and in cell proliferation rate
    • …
    corecore