934 research outputs found

    Optimum Detection Location-Based Cooperative Spectrum Sensing in Cognitive Radio

    Get PDF
    Cognitive radio arises as a hot research issue in wireless communications recently, attributed to its capability of enhancing spectral efficiency and catering for the growing demand for bandwidth. As a good embodiment of cognitive radio’s unique feature, i.e. making use of every bit spectral resource, spectrum sensing plays a vital role in the implementation of cognitive radio. To alleviate negative effect on cooperative spectrum sensing brought by bit errors, we introduce a novel concept, i.e. Optimum Detection Location (ODL) and present two algorithms of different computational complexity for locating ODL, together with an ODL-Based cooperative spectrum sensing scheme, with the motivation to exploit the gain derived from geographic advantages and multiuser diversity. Numerical and simulation results both demonstrate that our proposed spectrum sensing scheme can significantly improve the sensing performance in the case of reporting channel with bit errors

    Determination of Real-Time Efflux Phenotypes in Escherichia coli AcrB Binding Pocket Phenylalanine Mutants Using a 1,2′-Dinaphthylamine Efflux Assay

    Get PDF
    To evaluate the importance of phenylalanine residues for substrate transport in the Escherichia coli efflux pump protein AcrB, we subjected Phe-to-Ala binding pocket mutants to a real-time efflux assay with the novel near-infrared lipophilic membrane probe 1,2′-dinaphthylamine (1,2′-DNA). All mutations, with the exception of F617A, led to considerable retardation of efflux. F610A was the point mutation with the most pronounced impact, followed by F628A, F615A, F136A, and F178A. This is the first study to demonstrate the importance of single phenylalanine residues within the AcrB binding pocket for real-time substrate transport

    Crystalline Bi4Ge3O12 fibers fabricated by micro-pulling down technique for optical high voltage sensing

    Get PDF
    AbstractCommonly optical high voltage sensors employ the Pockels effect in a bulk electro-optic crystal such as Bi4Ge3O12 (BGO). Typically, the maximum crystal length is 100-200mm and determined by the limits of the conventional growth technique (Czochralski). In this paper we report on the growth by a micro-pulling down technique of long single crystalline BGO fibers as an alternative to bulk crystals and their characterization for voltage sensing. The fiber thickness may range from a few 100μm to a few mm. The parameters needed for stable growth over the entire length of the crystal were analyzed and optimized. Thin rods with a length of up to 850mm were grown. Samples were characterized with respect to homogeneity of growth, residual birefringence (BGO is free of natural birefringence), crystal orientation, and performance under voltage

    Use of non‐pharmacological strategies for pain relief in addiction treatment patients with chronic pain

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138296/1/ajad12600_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138296/2/ajad12600.pd

    The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison

    Get PDF
    BACKGROUND: Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. RESULTS: The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. CONCLUSION: The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to data normalization and statistical analysis methods, as it yields as greater number of statistically significant differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    Toward a fully cloudified mobile network infrastructure

    Get PDF
    Cloud computing enables the on-demand delivery of resources for a multitude of services and gives the opportunity for small agile companies to compete with large industries. In the telco world, cloud computing is currently mostly used by mobile network operators (MNO) for hosting non-critical support services and selling cloud services such as applications and data storage. MNOs are investigating the use of cloud computing to deliver key telecommunication services in the access and core networks. Without this, MNOs lose the opportunities of both combining this with over-the-top (OTT) and value-added services to their fundamental service offerings and leveraging cost-effective commodity hardware. Being able to leverage cloud computing technology effectively for the telco world is the focus of mobile cloud networking (MCN). This paper presents the key results of MCN integrated project that includes its architecture advancements, prototype implementation, and evaluation. Results show the efficiency and the simplicity that a MNO can deploy and manage the complete service lifecycle of fully cloudified, composed services that combine OTT/IT- and mobile-network-based services running on commodity hardware. The extensive performance evaluation of MCN using two key proof-of-concept scenarios that compose together many services to deliver novel converged elastic, on-demand mobile-based but innovative OTT services proves the feasibility of such fully virtualized deployments. Results show that it is beneficial to extend cloud computing to telco usage and run fully cloudified mobile-network-based systems with clear advantages and new service opportunities for MNOs and end-users

    Profiles of disability among adults with bipolar spectrum disorders

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78039/1/57.pd

    Service Use and Barriers to Care among Heroin Users: Results from a National Survey

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78095/1/68.pd
    corecore