436 research outputs found
Spin-orbit driven Peierls transition and possible exotic superconductivity in CsWO
We study \textit{ab initio} a pyrochlore compound, CsWO, which
exhibits a yet unexplained metal-insulator transition. We find that (1) the
reported low- structure is likely inaccurate and the correct structure has a
twice larger cell; (2) the insulating phase is not of a Mott or dimer-singlet
nature, but a rare example of a 3D Peierls transition, with a simultaneous
condensation of three density waves; (3) spin-orbit interaction plays a crucial
role, forming well-nested bands. The high- (HT) phase, if stabilized, could
harbor a unique superconducting state that breaks the time
reversal symmetry, but is not chiral. This state was predicted in 1999, but
never observed. We speculate about possible ways to stabilize the HT phase
while keeping the conditions for superconductivity
Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes
We present a detailed study of the lattice dynamics and electron-phonon
coupling for a (3,3) carbon nanotube which belongs to the class of small
diameter based nanotubes which have recently been claimed to be
superconducting. We treat the electronic and phononic degrees of freedom
completely by modern ab-initio methods without involving approximations beyond
the local density approximation. Using density functional perturbation theory
we find a mean-field Peierls transition temperature of approx 40K which is an
order of magnitude larger than the calculated superconducting transition
temperature. Thus in (3,3) tubes the Peierls transition might compete with
superconductivity. The Peierls instability is related to the special 2k_F
nesting feature of the Fermi surface. Due to the special topology of the (n,n)
tubes also a q=0 coupling between the two bands crossing the Fermi energy at
k_F is possible which leads to a phonon softening at the Gamma point.Comment: 4 pages, 3 figures; to be published in Phys. Rev. Let
Pressure effects on crystal and electronic structure of bismuth tellurohalides
We study the possibility of pressure-induced transitions from a normal
semiconductor to a topological insulator (TI) in bismuth tellurohalides using
density functional theory and tight-binding method. In BiTeI this transition is
realized through the formation of an intermediate phase, a Weyl semimetal, that
leads to modification of surface state dispersions. In the topologically
trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The
Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the
Weyl semimetal--TI transition occurs, the surface electronic structure is
characterized by gapless states with linear dispersion. The peculiarities of
the surface states modification under pressure depend on the band-bending
effect. We have also calculated the frequencies of Raman active modes for BiTeI
in the proposed high-pressure crystal phases in order to compare them with
available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological
phase transition does not occur. In BiTeBr, the crystal structure changes with
pressure but the phase remains a trivial one. However, the transition appears
to be possible if the low-pressure crystal structure is retained. In BiTeCl
under pressure, the topological phase does not appear up to 18 GPa due to a
relatively large band gap width in this compound
Lattice dynamics and electron-phonon coupling in transition metal diborides
The phonon density-of-states of transition metal diborides TMB2 with TM = Ti,
V, Ta, Nb and Y has been measured using the technique of inelastic neutron
scattering. The experimental data are compared with ab initio density
functional calculations whereby an excellent agreement is registered. The
calculations thus can be used to obtain electron-phonon spectral functions
within the isotropic limit. A comparison to similar data for MgB2 and AlB2
which were subject of prior publications as well as parameters important for
the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure
Characteristics of oxygen isotope substitutions in the quasiparticle spectrum of BiSrCaCuO
There is an ongoing debate about the nature of the bosonic excitations
responsible for the quasiparticle self energy in high temperature
superconductors -- are they phonons or spin fluctuations? We present a careful
analysis of the bosonic excitations as revealed by the `kink' feature at 70 meV
in angle resolved photoemission data using Eliashberg theory for a d-wave
superconductor. Starting from the assumption that nodal quasiparticles are not
coupled to the magnetic resonance, the sharp structure at meV
can be assigned to phonons. We find that not only can we account for the shifts
of the kink energy seen on oxygen isotope substitution but also get a
quantitative estimate of the fraction of the area under the electron-boson
spectral density which is due to phonons. We conclude that for optimally doped
BiSrCaCuO phonons contribute % and
non-phononic excitations %.Comment: 6 pages, 3 figure
Ab initio lattice dynamics and electron-phonon coupling of Bi(111)
We present a comprehensive ab initio study of structural, electronic, lattice
dynamical and electron-phonon coupling properties of the Bi(111) surface within
density functional perturbation theory. Relativistic corrections due to
spin-orbit coupling are consistently taken into account. As calculations are
carried out in a periodic slab geometry, special attention is given to the
convergence with respect to the slab thickness. Although the electronic
structure of Bi(111) thin films varies significantly with thickness, we found
that the lattice dynamics of Bi(111) is quite robust and appears converged
already for slabs as thin as 6 bilayers. Changes of interatomic couplings are
confined mostly to the first two bilayers, resulting in super-bulk modes with
frequencies higher than the optic bulk spectrum, and in an enhanced density of
states at lower frequencies for atoms in the first bilayer. Electronic states
of the surface band related to the outer part of the hole Fermi surfaces
exhibit a moderate electron-phonon coupling of about 0.45, which is larger than
the coupling constant of bulk Bi. States at the inner part of the hole surface
as well as those forming the electron pocket close to the zone center show much
increased couplings due to transitions into bulk projected states near
Gamma_bar. For these cases, the state dependent Eliashberg functions exhibit
pronounced peaks at low energy and strongly deviate in shape from a Debye-like
spectrum, indicating that an extraction of the coupling strength from measured
electronic self-energies based on this simple model is likely to fail.Comment: 30 pages, 11 figure
- …