5,536 research outputs found

    Quantum effective force in an expanding infinite square-well potential and Bohmian perspective

    Full text link
    The Schr\"{o}dinger equation is solved for the case of a particle confined to a small region of a box with infinite walls. If walls of the well are moved, then, due to an effective quantum nonlocal interaction with the boundary, even though the particle is nowhere near the walls, it will be affected. It is shown that this force apart from a minus sign is equal to the expectation value of the gradient of the quantum potential for vanishing at the walls boundary condition. Variation of this force with time is studied. A selection of Bohmian trajectories of the confined particle is also computed.Comment: 7 figures, Accepted by Physica Script

    On the p4p^4--corrections to K3πK \to 3\pi decay amplitudes in nonlinear and linear chiral models

    Full text link
    The calculations of isotopic amplitudes and their results for the direct CPCP--violating charge asymmetry in K±3πK^\pm \to 3\pi decays within the nonlinear and linear (σ\sigma--model) chiral Lagrangian approach are compared with each other. It is shown, that the latter, taking into account intermediate scalar resonances, does not reproduce the p4p^4--corrections of the nonlinear approach introduced by Gasser and Leutwyler, being saturated mainly by vector resonance exchange. The resulting differences concerning the CPCP violation effect are traced in some detail.Comment: 14 page

    Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC

    Full text link
    Previous work on electroweak radiative corrections to high energy scattering using soft-collinear effective theory (SCET) has been extended to include external transverse and longitudinal gauge bosons and Higgs bosons. This allows one to compute radiative corrections to all parton-level hard scattering amplitudes in the standard model to NLL order, including QCD and electroweak radiative corrections, mass effects, and Higgs exchange corrections, if the high-scale matching, which is suppressed by two orders in the log counting, and contains no large logs, is known. The factorization structure of the effective theory places strong constraints on the form of gauge theory amplitudes at high energy for massless and massive gauge theories, which are discussed in detail in the paper. The radiative corrections can be written as the sum of process-independent one-particle collinear functions, and a universal soft function. We give plots for the radiative corrections to q qbar -> W_T W_T, Z_T Z_T, W_L W_L, and Z_L H, and gg -> W_T W_T to illustrate our results. The purely electroweak corrections are large, ranging from 12% at 500 GeV to 37% at 2 TeV for transverse W pair production, and increasing rapidly with energy. The estimated theoretical uncertainty to the partonic (hard) cross-section in most cases is below one percent, smaller than uncertainties in the parton distribution functions (PDFs). We discuss the relation between SCET and other factorization methods, and derive the Magnea-Sterman equations for the Sudakov form factor using SCET, for massless and massive gauge theories, and for light and heavy external particles.Comment: 44 pages, 30 figures. Refs added, typos fixed. ZL ZL plots removed because of a possible subtlet

    On Epstein's trajectory model of non-relativistic quantum mechanics

    Full text link
    In 1952 Bohm presented a theory about non-relativistic point-particles moving along deterministic trajectories and showed how it reproduces the predictions of standard quantum theory. This theory was actually presented before by de Broglie in 1926, but Bohm's particular formulation of the theory inspired Epstein to come up with a different trajectory model. The aim of this paper is to examine the empirical predictions of this model. It is found that the trajectories in this model are in general very different from those in the de Broglie-Bohm theory. In certain cases they even seem bizarre and rather unphysical. Nevertheless, it is argued that the model seems to reproduce the predictions of standard quantum theory (just as the de Broglie-Bohm theory).Comment: 12 pages, no figures, LaTex; v2 minor improvement

    Adiabatic theorems for linear and nonlinear Hamiltonians

    Full text link
    Conditions for the validity of the quantum adiabatic approximation are analyzed. For the case of linear Hamiltonians, a simple and general sufficient condition is derived, which is valid for arbitrary spectra and any kind of time variation. It is shown that in some cases the found condition is necessary and sufficient. The adiabatic theorem is generalized for the case of nonlinear Hamiltonians

    Relating the Lorentzian and exponential: Fermi's approximation,the Fourier transform and causality

    Full text link
    The Fourier transform is often used to connect the Lorentzian energy distribution for resonance scattering to the exponential time dependence for decaying states. However, to apply the Fourier transform, one has to bend the rules of standard quantum mechanics; the Lorentzian energy distribution must be extended to the full real axis <E<-\infty<E<\infty instead of being bounded from below 0E<0\leq E <\infty (``Fermi's approximation''). Then the Fourier transform of the extended Lorentzian becomes the exponential, but only for times t0t\geq 0, a time asymmetry which is in conflict with the unitary group time evolution of standard quantum mechanics. Extending the Fourier transform from distributions to generalized vectors, we are led to Gamow kets, which possess a Lorentzian energy distribution with <E<-\infty<E<\infty and have exponential time evolution for tt0=0t\geq t_0 =0 only. This leads to probability predictions that do not violate causality.Comment: 23 pages, no figures, accepted by Phys. Rev.

    Typicality vs. probability in trajectory-based formulations of quantum mechanics

    Full text link
    Bohmian mechanics represents the universe as a set of paths with a probability measure defined on it. The way in which a mathematical model of this kind can explain the observed phenomena of the universe is examined in general. It is shown that the explanation does not make use of the full probability measure, but rather of a suitable set function deriving from it, which defines relative typicality between single-time cylinder sets. Such a set function can also be derived directly from the standard quantum formalism, without the need of an underlying probability measure. The key concept for this derivation is the {\it quantum typicality rule}, which can be considered as a generalization of the Born rule. The result is a new formulation of quantum mechanics, in which particles follow definite trajectories, but which is only based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic
    corecore