27 research outputs found

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s1^{-1} and an ejecta mass of few ×105\times 10^{-5} M_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure

    Early evolution of the extraordinary Nova Del 2013 (V339 Del)

    Full text link
    We determine the temporal evolution of the luminosity L(WD), radius R(WD) and effective temperature Teff of the white dwarf (WD) pseudophotosphere of V339 Del from its discovery to around day 40. Another main objective was studying the ionization structure of the ejecta. These aims were achieved by modelling the optical/near-IR spectral energy distribution (SED) using low-resolution spectroscopy (3500 - 9200 A), UBVRcIc and JHKLM photometry. During the fireball stage (Aug. 14.8 - 19.9, 2013), Teff was in the range of 6000 - 12000 K, R(WD) was expanding non-uniformly in time from around 66 to around 300 (d/3 kpc) R(Sun), and L(WD) was super-Eddington, but not constant. After the fireball stage, a large emission measure of 1.0-2.0E+62 (d/3 kpc)**2 cm**(-3) constrained the lower limit of L(WD) to be well above the super-Eddington value. The evolution of the H-alpha line and mainly the transient emergence of the Raman-scattered O VI 1032 A line suggested a biconical ionization structure of the ejecta with a disk-like H I region persisting around the WD until its total ionization, around day 40. It is evident that the nova was not evolving according to the current theoretical prediction. The unusual non-spherically symmetric ejecta of nova V339 Del and its extreme physical conditions and evolution during and after the fireball stage represent interesting new challenges for the theoretical modelling of the nova phenomenon.Comment: 14 pages, 9 figures, 3 tables, accepted for Astronomy and Astrophysic

    He II λ\lambda4686 emission from the massive binary system in η\eta Car: constraints to the orbital elements and the nature of the periodic minima

    Get PDF
    {\eta} Carinae is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He II λ4686\lambda 4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He II λ4686\lambda 4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of EW(He II λ4686\lambda 4686), the line radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW(He II λ4686\lambda 4686) variations, combined with other measurements, yield an orbital period 2022.7±0.32022.7\pm0.3 d. The observed variability of the EW(He II λ4686\lambda 4686) was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary's atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135135^\circ-153153^\circ, and the longitude of periastron to 234234^\circ-252252^\circ. It also suggests that periastron passage occurred on T0=2456874.4±1.3T_0 = 2456874.4\pm1.3 d. Our model also reproduced EW(He II λ4686\lambda 4686) variations from a polar view of the primary star as determined from the observed He II λ4686\lambda 4686 emission scattered off the Homunculus nebula.Comment: The article contains 23 pages and 17 figures. It has been accepted for publication in Ap

    Small-Scale Extrusion of Corn Masa By-Products

    Get PDF
    Corn masa by-product streams are high in fiber and are amenable for utilization in livestock feed rations. This approach is a potentially viable alternative to landfilling, the traditional disposal method for these processing residues. Suspended solids were separated from a masa processing waste stream, blended with soybean meal at four levels (0, 10, 20, and 30% wb), and extruded in a laboratory-scale extruder at speeds of 50 rpm (5.24 rad/sec) and 100 rpm (10.47 rad/sec) with temperature profiles of 80-90-100°C and 100-110-120°C. Processing conditions, including dough and die temperatures, drive torque, specific mechanical energy consumption, product and feed material throughput rates, dough apparent viscosity, and dough density, were monitored during extrusion. The resulting products were subjected to physical and nutritional characterization to determine the effects of processing conditions for these blends. Extrudate analysis included moisture content, water activity, crude protein, in vitro protein digestibility, crude fat, ash, product diameter, expansion ratios, unit and true density, color, water absorption and solubility, and durability. All blends were suitable for extrusion at the processing conditions used. Blend ratio had little effect on either processing parameters or extrudate properties; extrusion temperature and screw speed, on the other hand, significantly affected both processing and product properties

    Towards a consistent model of the hot quadruple system HD 93206 = QZ Carin\ae: II. N-body model

    Full text link
    HD 93206 is early-type massive stellar system, composed of components resolved by direct imaging (Ab, Ad, B, C, D) as well as a compact sub-system (Aa1, Aa2, Ac1, Ac2). Its geometry was already determined on the basis of extensive photometric, spectroscopic and interferometric observations. However, the fundamental absolute parameters are still not known precisely enough. We use an advanced N-body model to account for all mutual gravitational perturbations among the four close components, and all observational data types, including: astrometry, radial velocities, eclipse timing variations, squared visibilities, closure phases, triple products, normalized spectra, and spectral-energy distribution (SED). The respective model has 38 free parameters, namely three sets of orbital elements, component masses, and their basic radiative properties (TT, logg\log g, vrotv_{\rm rot}). We revised the fundamental parameters of QZ Car as follows. For a model with the nominal extinction coefficient RVAV/E(BV)=3.1R_V \equiv A_V/E(B-V) = 3.1, the best-fit masses are m1=26.1MSm_1 = 26.1\,M_{\rm S}, m2=32.3MSm_2 = 32.3\,M_{\rm S}, m3=70.3MSm_3 = 70.3\,M_{\rm S}, m4=8.8MSm_4 = 8.8\,M_{\rm S}, with uncertainties of the order of 2MS2\,M_{\rm S}, and the system distance d=(2800±100)pcd = (2800\pm 100)\,{\rm pc}. In an alternative model, where we increased the weights of RV and TTV observations and relaxed the SED constraints, because extinction can be anomalous with RV3.4R_V \sim 3.4, the distance is smaller, d=(2450±100)pcd = (2450\pm 100)\,{\rm pc}. This would correspond to that of Collinder 228 cluster. Independently, this is confirmed by dereddening of the SED, which is only then consistent with the early-type classification (O9.7Ib for Aa1, O8III for Ac1). Future modelling should also account for an accretion disk around Ac2 component.Comment: A&A, submitte

    The apparent eta Carinae's long-term evolution and the critical role played by the strengthening of P Cygni absorption lines

    Full text link
    Over the entire 20th century, Eta Carinae (\ec) has displayed a unique spectrum, which recently has been evolving towards that of a typical LBV. The two competing scenarios to explain such evolution are: (1) a dissipating occulter in front of a stable star or (2) a decreasing mass loss rate of the star. The first mechanism simultaneously explains why the central star appears to be secularly increasing its apparent brightness while its luminosity does not change; why the Homunculus' apparent brightness remains almost constant; and why the spectrum seen in direct light is becoming more similar to that reflected from the Homunculus (and which resembles a typical LBV). The second scenario does not account for these facts and predicts an increase in the terminal speed of the wind, contrary to observations. In this work, we present new data showing that the P Cygni absorption lines are secularly strengthening, which is not the expected behaviour for a decreasing wind-density scenario. CMFGEN modelling of the primary's wind with a small occulter in front agrees with observations. One could argue that invoking a dissipating coronagraphic occulter makes this object even more peculiar than it already appears to be. However, on the contrary, it solves the apparent contradictions between many observations. Moreover, by assigning the long-term behaviour to circumstellar causes and the periodic variations due to binarity, a star more stable after the 1900s than previously thought is revealed, contrary to the earlier paradigm of an unpredictable object.Comment: 17 pages, 12 figures, submitted to MNRA

    He II λ4686 emission from the massive binary system in η car: constraints to the orbital elements and the nature of the periodic minima

    Get PDF
    Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He ii λ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He ii λ4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7 ±0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary's atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on days). Our model also reproduced EW variations from a polar view of the primary star as determined from the observed He ii λ4686 emission scattered off the Homunculus nebula.Facultad de Ciencias Astronómicas y Geofísica

    He II λ4686 emission from the massive binary system in η car: constraints to the orbital elements and the nature of the periodic minima

    Get PDF
    Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He ii λ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He ii λ4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7 ±0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary's atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on days). Our model also reproduced EW variations from a polar view of the primary star as determined from the observed He ii λ4686 emission scattered off the Homunculus nebula.Facultad de Ciencias Astronómicas y Geofísica
    corecore