61 research outputs found
Sleep quality, the neglected outcome variable in clinical studies focusing on locomotor system; a construct validation study
Background: In addition to general health and pain, sleep is highly relevant to judging the well-being of an individual. Of these three important outcome variables, however, sleep is neglected in most outcome studies. Sleep is a very important resource for recovery from daily stresses and strains, and any alteration of sleep will likely affect mental and physical health, especially during disease. Sleep assessment therefore should be standard in all population-based or clinical studies focusing on the locomotor system. Yet current sleep assessment tools are either too long or too specific for general use.
Methods: Based on a literature review and subsequent patient-based rating of items, an expert panel designed a four-item questionnaire about sleep. Construct validation of the questionnaire in a random sample of the German-speaking Swiss population was performed in 2003. Reliability, correlation, and tests for internal consistency and validity were analyzed.
Results: Overall, 16,634 (70%) out of 23,763 eligible individuals participated in the study. Test-retest reliability coefficients ranged from 0.72 to 0.87, and a Cronbach’s alpha of 0.83 indicates good internal consistency. Results show a moderate to good correlation between sleep disturbances and health perception, and between sleep disturbances and overall pain.
Conclusions: The Sleep Standard Evaluation Questionnaire (SEQ-Sleep) is a reliable and short tool with confirmed
construct validity for sleep assessment in population-based observational studies. It is easy to administer and therefore suitable for postal surveys of the general population. Criterion validity remains to be determined
Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein
Nicotinic Receptors Underlying Nicotine Dependence: Evidence from Transgenic Mouse Models.
Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) subtypes localized on the pre- and postsynaptic membranes of cells, which subsequently leads to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin by briefly reviewing the current understanding of nicotine's actions on nAChRs and highlight considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we discuss the seminal discoveries derived from genetically modified mouse models, which have greatly contributed to our understanding of nicotine's effects on the reward-related mesolimbic pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging areas of research focusing on modulation of nAChR expression and/or function are considered. Taken together, these discoveries have provided a foundational understanding of various genetic, neurobiological, and behavioral factors underlying the motivation to use nicotine and related dependence processes, which are thereby advancing drug discovery efforts to promote long-term abstinence
- …