31 research outputs found

    Endogenous transforming growth factor β1 suppresses inflammation and promotes survival in adult CNS

    Get PDF
    Transforming growth factor β1 (TGFβ1) is a pleiotropic cytokine with potent neurotrophic and immunosuppressive properties that is upregulated after injury, but also expressed in the normal nervous system. In the current study, we examined the regulation of TGFβ1 and the effects of TGFβ1 deletion on cellular response in the uninjured adult brain and in the injured and regenerating facial motor nucleus. To avoid lethal autoimmune inflammation within 3 weeks after birth in TGFβ1-deficient mice, this study was performed on a T- and B-cell-deficient RAG2-/- background. Compared with wild-type siblings, homozygous deletion of TGFβ1 resulted in an extensive inflammatory response in otherwise uninjured brain parenchyma. Astrocytes increased in GFAP and CD44 immunoreactivity; microglia showed proliferative activity, expression of phagocytosis-associated markers [αXβ2, B7.2, and MHC1 (major histocompatibility complex type 1)], and reduced branching. Ultrastructural analysis revealed focal blockade of axonal transport, perinodal damming of axonal organelles, focal demyelination, and myelin debris in granule-rich, phagocytic microglia. After facial axotomy, absence of TGFβ1 led to a fourfold increase in neuronal cell death (52 vs 13%), decreased central axonal sprouting, and significant delay in functional recovery. It also interfered with the microglial response, resulting in a diminished expression of early activation markers [ICAM1 (intercellular adhesion molecule 1), α6β1, and αMβ2] and reduced proliferation. In line with axonal and glial findings in the otherwise uninjured CNS, absence of endogenous TGFβ1 also caused an ∼10% reduction in the number of normal motoneurons, pointing to an ongoing and potent trophic role of this anti-inflammatory cytokine in the normal as well as in the injured brain. Copyright © 2007 Society for Neuroscience

    Endogenous TGF-beta 1 suppresses inflammation and promotes survival in adult CNJS

    Get PDF
    Transforming growth factor β1 (TGFβ1) is a pleiotropic cytokine with potent neurotrophic and immunosuppressive properties that is upregulated after injury, but also expressed in the normal nervous system. In the current study, we examined the regulation of TGFβ1 and the effects of TGFβ1 deletion on cellular response in the uninjured adult brain and in the injured and regenerating facial motor nucleus. To avoid lethal autoimmune inflammation within 3 weeks after birth in TGFβ1-deficient mice, this study was performed on a T- and B-cell-deficient RAG2−/− background. Compared with wild-type siblings, homozygous deletion of TGFβ1 resulted in an extensive inflammatory response in otherwise uninjured brain parenchyma. Astrocytes increased in GFAP and CD44 immunoreactivity; microglia showed proliferative activity, expression of phagocytosis-associated markers [αXβ2, B7.2, and MHC1 (major histocompatibility complex type 1)], and reduced branching. Ultrastructural analysis revealed focal blockade of axonal transport, perinodal damming of axonal organelles, focal demyelination, and myelin debris in granule-rich, phagocytic microglia. After facial axotomy, absence of TGFβ1 led to a fourfold increase in neuronal cell death (52 vs 13%), decreased central axonal sprouting, and significant delay in functional recovery. It also interfered with the microglial response, resulting in a diminished expression of early activation markers [ICAM1 (intercellular adhesion molecule 1), α6β1, and αMβ2] and reduced proliferation. In line with axonal and glial findings in the otherwise uninjured CNS, absence of endogenous TGFβ1 also caused an ∼10% reduction in the number of normal motoneurons, pointing to an ongoing and potent trophic role of this anti-inflammatory cytokine in the normal as well as in the injured brain

    Neuronal c-Jun is required for successful axonal regeneration, but the effects of phosphorylation of its N-terminus are moderate.

    Get PDF
    Although neural c-Jun is essential for successful peripheral nerve regeneration, the cellular basis of this effect and the impact of c-Jun activation are incompletely understood. In the current study, we explored the effects of neuron-selective c-Jun deletion, substitution of serine 63 and 73 phosphoacceptor sites with non-phosphorylatable alanine, and deletion of Jun N-terminal kinases 1, 2 and 3 in mouse facial nerve regeneration. Removal of the floxed c-jun gene in facial motoneurons using cre recombinase under control of a neuron-specific synapsin promoter (junΔS) abolished basal and injury-induced neuronal c-Jun immunoreactivity, as well as most of the molecular responses following facial axotomy. Absence of neuronal Jun reduced the speed of axonal regeneration following crush, and prevented most cut axons from reconnecting to their target, significantly reducing functional recovery. Despite blocking cell death, this was associated with a large number of shrunken neurons. Finally, junΔS mutants also had diminished astrocyte and microglial activation and T-cell influx, suggesting that these non-neuronal responses depend on the release of Jun-dependent signals from neighboring injured motoneurons. The effects of substituting serine 63 and 73 phosphoacceptor sites (junAA), or of global deletion of individual kinases responsible for N-terminal c-Jun phosphorylation were mild. junAA mutants showed decrease in neuronal cell size, a moderate reduction in post-axotomy CD44 levels and slightly increased astrogliosis. Deletion of Jun N-terminal kinase (JNK)1 or JNK3 showed delayed functional recovery; deletion of JNK3 also interfered with T-cell influx, and reduced CD44 levels. Deletion of JNK2 had no effect. Thus, neuronal c-Jun is needed in regeneration, but JNK phosphorylation of the N-terminus mostly appears to not be required for its function

    Characterisation of a Peripheral Neuropathic Component of the Rat Monoiodoacetate Model of Osteoarthritis

    Get PDF
    Joint degeneration observed in the rat monoiodoacetate (MIA) model of osteoarthritis shares many histological features with the clinical condition. The accompanying pain phenotype has seen the model widely used to investigate the pathophysiology of osteoarthritis pain, and for preclinical screening of analgesic compounds. We have investigated the pathophysiological sequellae of MIA used at low (1 mg) or high (2 mg) dose. Intra-articular 2 mg MIA induced expression of ATF-3, a sensitive marker for peripheral neuron stress/injury, in small and large diameter DRG cell profiles principally at levels L4 and 5 (levels predominated by neurones innervating the hindpaw) rather than L3. At the 7 day timepoint, ATF-3 signal was significantly smaller in 1 mg MIA treated animals than in the 2 mg treated group. 2 mg, but not 1 mg, intra-articular MIA was also associated with a significant reduction in intra-epidermal nerve fibre density in plantar hindpaw skin, and produced spinal cord dorsal and ventral horn microgliosis. The 2 mg treatment evoked mechanical pain-related hypersensitivity of the hindpaw that was significantly greater than the 1 mg treatment. MIA treatment produced weight bearing asymmetry and cold hypersensitivity which was similar at both doses. Additionally, while pregabalin significantly reduced deep dorsal horn evoked neuronal responses in animals treated with 2 mg MIA, this effect was much reduced or absent in the 1 mg or sham treated groups. These data demonstrate that intra-articular 2 mg MIA not only produces joint degeneration, but also evokes significant axonal injury to DRG cells including those innervating targets outside of the knee joint such as hindpaw skin. This significant neuropathic component needs to be taken into account when interpreting studies using this model, particularly at doses greater than 1 mg MIA

    Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children

    Get PDF
    Purpose With growing evidence that rare single gene disorders present in the neonatal period, there is a need for rapid, systematic, and comprehensive genomic diagnoses in ICUs to assist acute and long-term clinical decisions. This study aimed to identify genetic conditions in neonatal (NICU) and paediatric (PICU) intensive care populations. Methods We performed trio whole genome sequence (WGS) analysis on a prospective cohort of families recruited in NICU and PICU at a single site in the UK. We developed a research pipeline in collaboration with the National Health Service to deliver validated pertinent pathogenic findings within 2andndash;3andnbsp;weeks of recruitment. Results A total of 195 families had whole genome analysis performed (567 samples) and 21% received a molecular diagnosis for the underlying genetic condition in the child. The phenotypic description of the child was a poor predictor of the gene identified in 90% of cases, arguing for gene agnostic testing in NICU/PICU. The diagnosis affected clinical management in more than 65% of cases (83% in neonates) including modification of treatments and care pathways and/or informing palliative care decisions. A 2andndash;3andnbsp;week turnaround was sufficient to impact most clinical decision-making. Conclusions The use of WGS in intensively ill children is acceptable and trio analysis facilitates diagnoses. A gene agnostic approach was effective in identifying an underlying genetic condition, with phenotypes and symptomatology being primarily used for data interpretation rather than gene selection. WGS analysis has the potential to be a first-line diagnostic tool for a subset of intensively ill children.</p

    Evaluation of Brain Nuclear Medicine Imaging Tracers in a Murine Model of Sepsis-Associated Encephalopathy

    Get PDF
    PURPOSE: The purpose of this study was to evaluate a set of widely used nuclear medicine imaging agents as possible methods to study the early effects of systemic inflammation on the living brain in a mouse model of sepsis-associated encephalopathy (SAE). The lipopolysaccharide (LPS)-induced murine systemic inflammation model was selected as a model of SAE. PROCEDURES: C57BL/6 mice were used. A multimodal imaging protocol was carried out on each animal 4 h following the intravenous administration of LPS using the following tracers: [(99m)Tc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-hyd roxyiminobutan-2-yl]azanide ([(99m)Tc]HMPAO) and ethyl-7-[(125)I]iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carbox ylate ([(125)I]iomazenil) to measure brain perfusion and neuronal damage, respectively; 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) to measure cerebral glucose uptake. We assessed microglia activity on another group of mice using 2-[6-chloro-2-(4-[(125)I]iodophenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl -acetamide ([(125)I]CLINME). Radiotracer uptakes were measured in different brain regions and correlated. Microglia activity was also assessed using immunohistochemistry. Brain glutathione levels were measured to investigate oxidative stress. RESULTS: Significantly reduced perfusion values and significantly enhanced [(18)F]FDG and [(125)I]CLINME uptake was measured in the LPS-treated group. Following perfusion compensation, enhanced [(125)I]iomazenil uptake was measured in the LPS-treated group's hippocampus and cerebellum. In this group, both [(18)F]FDG and [(125)I]iomazenil uptake showed highly negative correlation to perfusion measured with ([(99m)Tc]HMPAO uptake in all brain regions. No significant differences were detected in brain glutathione levels between the groups. The CD45 and P2Y12 double-labeling immunohistochemistry showed widespread microglia activation in the LPS-treated group. CONCLUSIONS: Our results suggest that [(125)I]CLINME and [(99m)Tc]HMPAO SPECT can be used to detect microglia activation and brain hypoperfusion, respectively, in the early phase (4 h post injection) of systemic inflammation. We suspect that the enhancement of [(18)F]FDG and [(125)I]iomazenil uptake in the LPS-treated group does not necessarily reflect neural hypermetabolism and the lack of neuronal damage. They are most likely caused by processes emerging during neuroinflammation, e.g., microglia activation and/or immune cell infiltration

    Einfluß proinflammatorischer Zytokine auf entzündliche Prozesse im axotomierten Fazialiskern

    No full text

    Microglial major histocompatibility complex glycoprotein-1 in the axotomized facial motor nucleus: Regulation and role of tumor necrosis factor receptors 1 and 2

    No full text
    Presentation of antigen is key to the development of the immune response, mediated by association of antigen with major histocompatibility complex glycoproteins abbreviated as MHC1 and MHC2. In the current study, we examined the regulation of MHC1 in the brain after facial axotomy. The normal facial motor nucleus showed no immunoreactivity for MHC1 (MHC1-IR). Transection of the facial nerve led to a strong and selective up-regulation of MHC1-IR on the microglia in the affected nucleus, beginning at day 2 and reaching a maximum 14 days after axotomy, coinciding with a peak influx of the T lymphocytes that express CD8, the lymphocyte coreceptor for MHC1. Specificity of the MHC1 staining was confirmed in beta2-microglobulin-deficient mice, which lack normal cell surface MHC1-IR. MHC1-IR was particularly strong on phagocytic microglia, induced by delayed neuronal cell death, and correlated with the induction of mRNA for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and interferon-gamma and the influx of T lymphocytes. Mice with severe combined immunodeficiency (scid), lacking T and B cells, showed an increase in the number of MHC1-positive nodules but no significant effect on overall MHC1-IR. Transgenic deletion of the IL1 receptor type I, or the interferon-gamma receptor type 1 subunit, did not affect the microglial MHC1-IR. However, a combined deletion of TNF receptors 1 and 2 (TNFR1&2-KO) led to a decrease in microglial MHC1-IR and to a striking absence of the phagocytic microglial nodules. Deletion of TNFR2 (p75) did not have an effect; deletion of TNFR1 (p55) reduced the diffuse microglial staining for MHC1-IR but did not abolish the MHC1(+) microglial nodules. In summary, neural injury leads to the induction of MHC1-IR on the activated, phagocytic microglia. This induction of MHC1 precedes the interaction with the immune system, at least in the facial motor nucleus model. Finally, the impaired induction of these molecules, up to now, only in the TNFR-deficient mice underscores the central role of TNF in the immune activation of the injured nervous system. (C) 2004 Wiley-Liss, Inc
    corecore