41 research outputs found
Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus)
[EN] Skin is an important trait for Rex rabbits and skin development is influenced by many processes, including hair follicle cycling, keratinocyte differentiation and formation of coat colour and skin morphogenesis. We identified differentially expressed microRNAs (miRNAs) between the back and belly skin in Rex rabbits. In total, 211 miRNAs (90 upregulated miRNAs and 121 downregulated miRNAs) were identified with a |log2 (fold change)|>1 and P-value<0.05. Using target gene prediction for the miRNAs, differentially expressed predicted target genes were identified and the functional enrichment and signalling pathways of these target genes were processed to reveal their biological functions. A number of differentially expressed miRNAs were found to be involved in regulation of the cell cycle, skin epithelium differentiation, keratinocyte proliferation, hair follicle development and melanogenesis. In addition, target genes regulated by miRNAs play key roles in the activities of the Hedgehog signalling pathway, Wnt signalling pathway, Osteoclast differentiation and MAPK pathway, revealing mechanisms of skin development. Nine candidate miRNAs and 5 predicted target genes were selected for verification of their expression by quantitative reverse transcription polymerase chain reaction. A regulation network of miRNA and their target genes was constructed by analysing the GO enrichment and signalling pathways. Further studies should be carried out to validate the regulatory relationships between candidate miRNAs and their target genes.This study was supported by the Modern Agricultural Industrial System Special Funding (CARS-44-A-1), the Priority Academic Programme Development of Jiangsu Higher Education Institutions (2014-134) and the General Programme of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (16KJB230001).Zhao, B.; Chen, Y.; Mu, L.; Hu, S.; Wu, X. (2018). Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus). World Rabbit Science. 26(2):179-190. https://doi.org/10.4995/wrs.2018.7058SWORD179190262Adamidi C. 2008. Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnol., 26: 407-415. https://doi.org/10.1038/nbt1394Adijanto J., Castorino J.J., Wang Z.X., Maminishkis A., Grunwald G.B., Philp N.J. 2012. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J. Biol. Chem., 287: 20491-https://doi.org/10.1074/jbc.M112.354761Ahmed M.I., Alam M., Emelianov V.U., Poterlowicz K., Patel A., Sharov A.A., Mardaryev A.N., Botchkareva N.V. 2014. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. J. Cell Biol., 207: 549-567. https://doi.org/10.1083/jcb.201404001Alexander M., Kawahara G., Motohashi N., Casar J., Eisenberg I., Myers J., Gasperini M., Estrella E., Kho A., Mitsuhashi S. 2013. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Diff., 20: 1194-1208. https://doi.org/10.1038/cdd.2013.62Anders S. 2010. Analysing RNA-Seq data with the DESeq package. Mol. Biol., 43: 1-17.Andl T., Botchkareva N.V. 2015. MicroRNAs (miRNAs) in the control of HF development and cycling: the next frontiers in hair research. Exp. Dermatol., 24: 821-826. https://doi.org/10.1111/exd.12785Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT signals are required for the initiation of hair follicle development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3Antonini D., Russo MT., De Rosa L., Gorrese M., Del Vecchio L., Missero C. 2010. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J. Invest. Dermatol., 130: 1249-1257. https://doi.org/10.1038/jid.2009.438Athar M., Tang X., Lee J.L., Kopelovich L., Kim AL. 2006. Hedgehog signalling in skin development and cancer. Exp. Dermatol., 15: 667-677. https://doi.org/10.1111/j.1600-0625.2006.00473.xBartel D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281-297.https://doi.org/10.1016/S0092-8674(04)00045-5Bashirullah A., Pasquinelli A.E., Kiger A.A., Perrimon N., Ruvkun G., Thummel C.S. 2003. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol., 259: 1-8. https://doi.org/10.1016/S0012-1606(03)00063-0Bommer GT., Gerin I., Feng Y., Kaczorowski AJ., Kuick R., Love RE., Zhai Y., Giordano TJ., Qin ZS., Moore BB. 2007. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol., 17: 1298-1307. https://doi.org/10.1016/j.cub.2007.06.068Braun C.J., Zhang X., Savelyeva I., Wolff S., Moll U.M., Schepeler T., Ørntoft T.F., Andersen C.L., Dobbelstein M. 2008. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res., 68: 10094-10104.https://doi.org/10.1158/0008-5472.CAN-08-1569Callis T.E., Chen J.F., Wang D.Z. 2007. MicroRNAs in skeletal and cardiac muscle development. Dna Cell Biol., 26: 219-225. https://doi.org/10.1089/dna.2006.0556Caramuta S., Egyházi S., Rodolfo M., Witten D., Hansson J., Larsson C., Lui W.O. 2010. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol., 130: 2062-2070. https://doi.org/10.1038/jid.2010.63Chen C.H., Sakai Y., Demay M.B. 2001. Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology, 142: 5386-5386. https://doi.org/10.1210/endo.142.12.8650D'Juan T.F., Shariat N., Park C.Y., Liu H.J., Mavropoulos A., McManus M.T. 2013. Partially penetrant postnatal lethality of an epithelial specific MicroRNA in a mouse knockout. Plos One 8: e76634. https://doi.org/10.1371/journal.pone.0076634DeYoung M.P., Johannessen C.M., Leong C.O., Faquin W., Rocco J.W., Ellisen L.W. 2006. Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res., 66: 9362-9368. https://doi.org/10.1158/0008-5472.CAN-06-1619Eckert R.L., Welter J.F. 1996. Transcription factor regulation of epidermal keratinocyte gene expression. Mol. Biol. Rep., 23: 59-70. https://doi.org/10.1007/BF00357073Enright A.J., Bino J., Ulrike G., Thomas T., Chris S., Marks D.S. 2004. MicroRNA targets in Drosophila. Gen. Biol., 5: R1-R1. https://doi.org/10.1186/gb-2003-5-1-r1Fontanesi L., Scotti E., Allain D., Dall'Olio S. 2014. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Anim. Genet., 45: 248-255. https://doi.org/10.1111/age.12104Fontanesi L., Vargiolu M., Scotti E., Latorre R., Pellegrini M.S.F., Mazzoni M., Asti M., Chiocchetti R., Romeo G., Clavenzani P. 2014. The KIT gene is associated with the English spotting coat color locus and congenital megacolon in Checkered Giant rabbits (Oryctolagus cuniculus). Plos One 9: e93750. https://doi.org/10.1371/journal.pone.0093750Fuchs E. 2007. Scratching the surface of skin development. Nature, 445: 834-842. https://doi.org/10.1038/nature05659Georges S.A., Chau B.N., Braun C.J., Zhang X., Dobbelstein M. 2009. Cell cycle arrest or apoptosis by p53: are microRNAs-192/215 and-34 making the decision? Cell Cycle 8: 677-682. https://doi.org/10.4161/cc.8.5.8076Jackson S.J., Zhang Z., Feng D., Flagg M., O'Loughlin E., Wang D., Stokes N., Fuchs E., Yi R. 2013. Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development, 140: 1882-1891. https://doi.org/10.1242/dev.089649Katoh Y., Katoh M. 2008. Hedgehog signaling, epithelial-tomesenchymal transition and miRNA (review). Int. J. Mol. Med., 22: 271-275. https://doi.org/10.3892/ijmm_00000019Kim K., Vinayagam A., Perrimon N. 2014. A rapid genomewide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep., 7: 2066-2077. https://doi.org/10.1016/j.celrep.2014.05.025Kochegarov A., Moses A., Lian W., Meyer J., Hanna M.C., Lemanski L.F. 2013. A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos. J. Biomed. Sci., 20: 1. https://doi.org/10.1186/1423-0127-20-20Kozomara, A., Griffiths J. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 42: 68-73. https://doi.org/10.1093/nar/gkt1181Kureel J., Dixit M., Tyagi A., Mansoori M., Srivastava K., Raghuvanshi A., Maurya R., Trivedi R., Goel A., Singh D. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis., 5: e1050. https://doi.org/10.1038/cddis.2014.4Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9: 357-359. https://doi.org/10.1038/nmeth.1923Lim X., Nusse R. 2013. Wnt signaling in skin development, homeostasis, and disease. CSH Perspect. Biol., 5: a008029. https://doi.org/10.1101/cshperspect.a008029Liu Z., Xiao H., Li H., Zhao Y., Lai S., Yu X., Cai T., Du C., Zhang W., Li J. 2012. Identification of conserved and novel microRNAs in cashmere goat skin by deep sequencing. Plos One 7: e50001. https://doi.org/10.1371/journal.pone.0050001Mardaryev A.N., Ahmed M.I., Vlahov N.V., Fessing M.Y., Gill J.H., Sharov A.A., Botchkareva N.V. 2010. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J. 24: 3869-3881. https://doi.org/10.1096/fj.10-160663Mills A.A., Zheng B., Wang X.J., Vogel H., Roop D.R., Bradley A. 1999. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398: 708-713. https://doi.org/10.1038/19531Mueller D.W., Rehli M., Bosserhoff A.K. 2009. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol., 129: 1740-1751. https://doi.org/10.1038/jid.2008.452Naeem H., Küffner R., Csaba G., Zimmer R. 2010. miRSel: Automated extraction of associations between microRNAs and genes from the biomedical literature. Bmc Bioinformatics, 11: 135. https://doi.org/10.1186/1471-2105-11-135Neilson J.R., Zheng G.X., Burge CB., Sharp P.A. 2007. Dynamic regulation of miRNA expression in ordered stages of cellular development. Gene. Dev., 21: 578-589. https://doi.org/10.1101/gad.1522907Oda Y., Ishikawa M.H., Hawker N.P., Yun Q.C., Bikle D.D. 2007. Differential role of two VDR coactivators, DRIP205 and SRC-3, in keratinocyte proliferation and differentiation. J. Steroid Biochem., 103: 776-780. https://doi.org/10.1016/j.jsbmb.2006.12.069Pan L., Liu Y., Wei Q., Xiao C., Ji Q., Bao G., Wu X. 2015. Solexa-Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus). Plos One: 10. https://doi.org/10.1371/journal.pone.0124583Rosenfield R.L., Deplewski D., Greene M.E. 2001. Peroxisome proliferator-activated receptors and skin development. Horm. Res. Paediat., 54: 269-274. https://doi.org/10.1159/000053270Schneider M.R. 2012. MicroRNAs as novel players in skin development, homeostasis and disease. Brit. J. Dermatol., 166: 22-28. https://doi.org/10.1111/j.1365-2133.2011.10568.xSenoo M., Pinto F., Crum C.P., McKeon F. 2007. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129: 523-536. https://doi.org/10.1016/j.cell.2007.02.045Song B., Wang Y., Kudo K., Gavin E.J., Xi Y., Ju J. 2008. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin. Cancer Res., 14: 8080-8086. https://doi.org/10.1158/1078-0432.CCR-08-1422Suh K.S., Mutoh M., Mutoh T., Li L., Ryscavage A., Crutchley J.M., Dumont R.A., Cheng C., Yuspa S.H. 2007. CLIC4 mediates and is required for Ca2+-induced keratinocyte differentiation. J. Cell Sci., 120: 2631-2640. https://doi.org/10.1242/jcs.002741Tao Y. 2010. Studies on the quality of rex rabbit fur. World Rabbit Sci., 2: 21-24. https://doi.org/10.4995/wrs.1994.213Tian X., Jiang J., Fan R., Wang H., Meng X., He X., He J., Li H., Geng J., Yu X. 2012. Identification and characterization of microRNAs in white and brown alpaca skin. BMC genomics 13: 1.https://doi.org/10.1186/1471-2164-13-555Vadlakonda L., Pasupuleti M., Pallu R. 2014. Role of PI3K-AKTmTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol., 3: 85. https://doi.org/10.3389/fonc.2013.00085van Amerongen R., Fuerer C., Mizutani M., Nusse R. 2012. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol., 369: 101-114. https://doi.org/10.1016/j.ydbio.2012.06.020Vousden K.H., Lane D.P. 2007. p53 in health and disease. Nat. Rev. Mol. Cell Biol., 8: 275-283. https://doi.org/10.1038/nrm2147Wang P., Li Y., Hong W., Zhen J., Ren J., Li Z., Xu A. 2012. The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. Mol. BioSyst., 8: 2924-2931. https://doi.org/10.1039/c2mb25228gWhelan J.T., Hollis S.E., Cha D.S., Asch A.S., Lee M.H. 2012. Post‐transcriptional regulation of the Ras‐ERK/MAPK signaling pathway. J. Cell Physiol., 227: 1235-1241. https://doi.org/10.1002/jcp.22899Xia H., Ooi L.L.P.J., Hui K.M. 2013. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology, 58: 629-641. https://doi.org/10.1002/hep.26369Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C. 1999. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398: 714-718. https://doi.org/10.1038/19539Yu J., Peng H., Ruan Q., Fatima A., Getsios S., Lavker R.M. 2010. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 24: 3950-3959. https://doi.org/10.1096/fj.10-157404Yu J., Ryan D.G., Getsios S., Oliveira-Fernandes M., Fatima A., Lavker R.M. 2008. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. In Proc.: National Academy of Sciences 105: 19300-19305. https://doi.org/10.1073/pnas.0803992105Zhang L., Nie Q., Su Y., Xie X., Luo W., Jia X., Zhang X. 2013. MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene, 519: 77-81. https://doi.org/10.1016/j.gene.2013.01.043Zhao Y., Wang P., Meng J., Ji Y., Xu D., Chen T., Fan R., Yu X., Yao J., Dong C. 2015. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a. Int. J. Mol. Sci., 16: 10921-10933. https://doi.org/10.3390/ijms16051092
Mapping solar array location, size, and capacity using deep learning and overhead imagery
The effective integration of distributed solar photovoltaic (PV) arrays into
existing power grids will require access to high quality data; the location,
power capacity, and energy generation of individual solar PV installations.
Unfortunately, existing methods for obtaining this data are limited in their
spatial resolution and completeness. We propose a general framework for
accurately and cheaply mapping individual PV arrays, and their capacities, over
large geographic areas. At the core of this approach is a deep learning
algorithm called SolarMapper - which we make publicly available - that can
automatically map PV arrays in high resolution overhead imagery. We estimate
the performance of SolarMapper on a large dataset of overhead imagery across
three US cities in California. We also describe a procedure for deploying
SolarMapper to new geographic regions, so that it can be utilized by others. We
demonstrate the effectiveness of the proposed deployment procedure by using it
to map solar arrays across the entire US state of Connecticut (CT). Using these
results, we demonstrate that we achieve highly accurate estimates of total
installed PV capacity within each of CT's 168 municipal regions
Systematic Analysis of Non-coding RNAs Involved in the Angora Rabbit (Oryctolagus cuniculus) Hair Follicle Cycle by RNA Sequencing
The hair follicle (HF) cycle is a complicated and dynamic process in mammals, associated with various signaling pathways and gene expression patterns. Non-coding RNAs (ncRNAs) are RNA molecules that are not translated into proteins but are involved in the regulation of various cellular and biological processes. This study explored the relationship between ncRNAs and the HF cycle by developing a synchronization model in Angora rabbits. Transcriptome analysis was performed to investigate ncRNAs and mRNAs associated with the various stages of the HF cycle. One hundred and eleven long non-coding RNAs (lncRNAs), 247 circular RNAs (circRNAs), 97 microRNAs (miRNAs), and 1,168 mRNAs were differentially expressed during the three HF growth stages. Quantitative real-time PCR was used to validate the ncRNA transcriptome analysis results. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses provided information on the possible roles of ncRNAs and mRNAs during the HF cycle. In addition, lncRNA–miRNA–mRNA and circRNA–miRNA–mRNA ceRNA networks were constructed to investigate the underlying relationships between ncRNAs and mRNAs. LNC_002919 and novel_circ_0026326 were found to act as ceRNAs and participated in the regulation of the HF cycle as miR-320-3p sponges. This research comprehensively identified candidate regulatory ncRNAs during the HF cycle by transcriptome analysis, highlighting the possible association between ncRNAs and the regulation of hair growth. This study provides a basis for systematic further research and new insights on the regulation of the HF cycle
Deubiquitination of MITF-M Regulates Melanocytes Proliferation and Apoptosis
Microphthalmia-associated transcription factor-M (MITF-M) is the key gene in the proliferation and differentiation of melanocytes, which undergoes an array of post-translation modifications. As shown in our previous study, deubiquitinase USP13 is directly involved in melanogenesis. However, it is still ambiguous that the effect of USP13-mediated MITF-M expression on melanocytes proliferation and apoptosis. Herein, we found that MITF-M overexpressing melanocytes showed high cell proliferation, reduced apoptosis, and increased melanin levels. Besides, melanin-related genes, TYR, DCT, GPNMB, and PMEL, were significantly up-regulated in MITF-M overexpressing melanocytes. Furthermore, Exogenous USP13 significantly upregulated the endogenous MITF-M protein level, downregulated USP13 significantly inhibited MITF-M protein levels, without altering MITF-M mRNA expression. In addition, USP13 upregulation mitigated the MITF-M degradation and significantly increased the half-life of MITF-M. Also, USP13 stabilized the exogenous MITF protein levels. In conclusion, the MITF-M level was regulated by USP13 deubiquitinase in melanocytes, affecting melanocytes proliferation and apoptosis. This study provides the theoretical basis for coat color transformation that could be useful in the development of the new breed in fur animals
A Miniaturized Piezoelectric MEMS Accelerometer with Polygon Topological Cantilever Structure
This work proposes a miniaturized piezoelectric MEMS accelerometer based on polygonal topology with an area of only 868 × 833 μm2. The device consists of six trapezoidal cantilever beams with shorter fixed sides. Meanwhile, a device with larger fixed sides is also designed for comparison. The theoretical and finite element models are established to analyze the effect of the beam′s effective stiffness on the output voltage and natural frequency. As the stiffness of the device decreases, the natural frequency of the device decreases while the output signal increases. The proposed polygonal topology with shorter fixed sides has higher voltage sensitivity than the larger fixed one based on finite element simulations. The piezoelectric accelerometers are fabricated using Cavity-SOI substrates with a core piezoelectric film of aluminum nitride (AlN) of about 928 nm. The fabricated piezoelectric MEMS accelerometers have good linearity (0.99996) at accelerations less than 2 g. The measured natural frequency of the accelerometer with shorter fixed sides is 98 kHz, and the sensitivity, resolution, and minimum detectable signal at 400 Hz are 1.553 mV/g, 1 mg, and 2 mg, respectively. Compared with the traditional trapezoidal cantilever with the same diaphragm area, its output voltage sensitivity is increased by 22.48%
A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams
Microelectromechanical (MEMS) piezoelectric accelerometers are diversely used in consumer electronics and handheld devices due to their low power consumption as well as simple reading circuit and good dynamic performance. In this paper, a tri-axial piezoelectric accelerometer with folded beams is presented. The four beam suspensions are located at two sides of the mass aligned with edges of the mass, and the thickness of the beams is the same as the thickness of the mass block. In order to realize the multi-axis detection, a total of 16 sensing elements are distributed at the end of the folded beams. The structural deformations, stress distribution, and output characteristics due to the acceleration in x-, y-, and z-axis directions are theoretically analyzed and simulated. The proposed accelerometer is fabricated by MEMS processes to form Mo/AlN/ScAlN/Mo piezoelectric stacks as the sensing layer. Experiments show that the charge sensitivity along the x-, y-, and z-axes could reach up to ~1.07 pC/g, ~0.66 pC/g, and ~3.35 pC/g. The new structure can provide inspiration for the design of tri-axial piezoelectric accelerometers with great sensitivity and linearity
Al/Pb/α-PbO_2复合惰性阳极材料的电化学合成
利用恒电流从碱性镀液中在Al/Pb表面电化学合成α-PbO 2沉积层,制备出Al/Pb/α-PbO 2复合惰性阳极材料。通过阳极极化法考察α-PbO 2镀液组成及镀液温度对在Al/Pb表面电化学合成α-PbO 2的影响,采用XRD和SEM分别测试Al/Pb基体材料及α-Pb O2沉积层的相结构和表面微观组织特征。结果表明:α-PbO 2的电化学合成分由几个不同的步骤完成;适宜的条件能有效提高α-Pb O2电化学合成速率并避免析氧副反应的发生;从碱性溶液中合成的α-Pb O2具有斜方晶型结构,沉积层由发育良好的圆球形晶胞构成
electrosynthesisofalpbpbo2compositeinertanodematerials
利用恒电流从碱性镀液中在Al/Pb表面电化学合成α-PbO 2沉积层,制备出Al/Pb/α-PbO 2复合惰性阳极材料。通过阳极极化法考察α-PbO 2镀液组成及镀液温度对在Al/Pb表面电化学合成α-PbO 2的影响,采用XRD和SEM分别测试Al/Pb基体材料及α-Pb O2沉积层的相结构和表面微观组织特征。结果表明:α-PbO 2的电化学合成分由几个不同的步骤完成;适宜的条件能有效提高α-Pb O2电化学合成速率并避免析氧副反应的发生;从碱性溶液中合成的α-Pb O2具有斜方晶型结构,沉积层由发育良好的圆球形晶胞构成