177 research outputs found

    Cucumber: a model angiosperm for mitochondrial transformation

    Get PDF
    Abstract. Plants possess three major genomes, carried in the chloroplast, mitochondrion, and nucleus. The chloroplast genomes of higher plants tend to be of similar sizes and structure. In contrast both the nuclear and mitochondrial genomes show great size differences, even among closely related species. The largest plant mitochondrial genomes exist in the genus Cucumis at 1500 to 2300 kilobases, over 100 times the sizes of the yeast or human mitochondrial genomes. Biochemical and molecular analyses have established that the huge Cucumis mitochondrial genomes are due to extensive duplication of short repetitive DNA motifs. The organellar genomes of almost all organisms are maternally transmitted and few methods exist to manipulate these important genomes. Although chloroplast transformation has been achieved, no routine method exists to transform the mitochondrial genome of higher plants. A mitochondrial-transformation system for a higher plant would allow geneticists to use reverse genetics to study mitochondrial gene expression and to establish the efficacy of engineered mitochondrial genes for the genetic improvement of the mitochondrial genome. Cucumber possesses three unique attributes that make it a potential model system for mitochondrial transformation of a higher plant. Firstly, its mitochondria show paternal transmission. Secondly, microspores possess relatively few, huge mitochondria. Finally, there exists in cucumber unique mitochondrial mutations conditioning strongly mosaic (msc) phenotypes. The msc phenotypes appear after regeneration of plants from cell culture and sort with specific rearranged and deleted regions in the mitochondrial genome. These mitochondrial deletions may be a useful genetic tool to develop selectable markers for mitochondrial transformation of higher plants

    Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.)

    Full text link
    [EN] Borage (Borago officinalis L.) is an important medicinal plant with different culinary, pharmaceutical and industrial properties. Unfortunately, there are no published reports on the establishment of protocols to produce DHs in this species up to now. In this work, we show for the first time the induction of borage microspores to become embryogenic calli, from which haploid embryos are produced. In addition, we evaluated the effect of using different flower bud sizes, carbon sources, concentrations of 2,4-D and BAP, cold (4 A degrees C) pretreatments and heat shock treatments. Production of total calli, embryogenic calli and callus-derived embryos was differently affected by the different parameters studied. Our results showed that the use of 5-7 mm-long flower buds, a cold (4 A degrees C) pretreatment during 4 days, a 32 A degrees C heat shock for 3 days, and the addition of 3 % maltose and 2 mgl(-1) 2,4-D and 1 mgl(-1) BAP to the culture medium, was beneficial for embryo production. Overall, this work demonstrates that DH technology is possible in borage, and opens the door for future improvements needed to finally obtain borage DH plants.Eshaghi, ZC.; Abdollahi, MR.; Moosavi, SS.; Deljou, A.; Seguí-Simarro, JM. (2015). Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell, Tissue and Organ Culture. 122:321-329. doi:10.1007/s11240-015-0768-5S321329122Abdollahi MR, Moieni A, Javaran MJ (2004) Interactive effects of shock and culture density on embryo induction in isolated microspore culture of Brassica napus L. cv. Global Iranian J Biotech 2:97–100Bohanec B, Neskovic M, Vujicic R (1993) Anther culture and androgenetic plant regeneration in buckwheat (Fagopyrum esculentum Moench). Plant Cell Tissue Organ Cult 35:259–266Calleberg E, Johansson L (1996) Effect of gelling agents on anther cultures. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 23. Springer, Netherlands, pp 189–203Custers JBM, Cordewener JHG, Nöllen Y, Dons JJ, van Lookeren-Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271Ferrie AMR (2013) Advances in microspore culture technology: a biotechnological tool for the improvement of medicinal plants. In: Chandra S et al (eds) Biotechnology for medicinal plants. Springer, Berlin, pp 191–206Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104:301–309Ferrie AMR, Bethune T, Mykytyshyn M (2011) Microspore embryogenesis in the Apiaceae. Plant Cell Tissue Organ Cult 104:399–406Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375Gamborg OL, Miller RA, Ojiwa K (1968) Nutrient requirements of suspension culture of soybean root callus. Exp Cell Res 50:151–158Guil-Guerrero JL, García-Maroto F, Vilches-Ferrón MA, López-Alonso D (2003) Gamma-linolenic acid from fourteen Boraginaceae species. Ind Crop Prod 18:85–89Horrobin DF (1983) The regulation of prostaglandin biosynthesis by the manipulation of essential fatty acid metabolism. Rev Pure Appl Pharmacol Sci 4:339–383Irikova T, Grozeva S, Rodeva V (2011) Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiol Plant 33:1559–1570Lauxen MS, Kaltchuk-Santos E, Hu CY, Callegari-Jacques SM, Bodanese-Zanettini MH (2003) Association between floral bud size and developmental stage in soybean microspores. Braz Arch Biol Technol 46:515–520Leach CR, Mayo O, Bürger R (1990) Quantitatively determined self-incompatibility. Outcrossing in Borago officinalis. Theoret Appl Genetics 79:427–430Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 309–335Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726McDonald BE, Fitzpatrick K (1998) Designer Vegetable Oils. In: Mazza G (ed) Functional foods, biochemical and processing aspects. Technomic Publ Co. Inc, Lancaster, pp 265–291Ozkum D, Tipirdamaz R (2002) The effects of cold treatment and charcoal on the in vitro androgenesis of pepper (Capsicum annuum L.). Turk J Bot 26:131–139Parra-Vega V, González-García B, Seguí-Simarro JM (2013a) Morphological markers to correlate bud and anther development with microsporogenesis and microgametogenesis in pepper (Capsicum annuum L.). Acta Physiol Plant 35:627–633Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2013b) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:353–360Raquin C (1983) Utilization of different sugars as carbon sources for in vitro cultures of Petuina. Z Pflanzenphysol 111:453–457Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM (2012) Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184:235–250Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861Seguí-Simarro JM, Corral-Martínez P, Parra-Vega V, González-García B (2011) Androgenesis in recalcitrant solanaceous crops. Plant Cell Rep 30:765–778Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the reprogramming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534Simon JE, Chadwick AF, Craker LE (1984) Herbs: an indexed bibliography. 1971–1980. The scientific literature on selected herbs, and aromatic and medicinal plants of the temperate zone. Archon Books, Hamden, CTSkrzypek E, Czyczyło-Mysza I, Marcińska I, Wędzony M (2008) Prospects of androgenetic induction in Lupinus spp. Plant Cell Tissue Organ Cult 94(2):131–137Snape JW (1989) Doubled haploid breeding: theoretical basis and practical applications. In: Mujeeb-Kazi A, Sitch LA (eds) Review of advances in plant biotechnology, 1985–1988: 2nd international symposium genetic manipulation in crops. Mexico and Manila, CIMMYT and IRRI, pp 19–30Tipirdamaz R, Ellialtioğlu Ş (1998) The effects of cold treatments and activated charcoal on ABA contents of anthers and in vitro androgenesis in eggplant (Solanum melongena L.). In: Tsekos I, Moustakas M (eds) Progress in botanical research, Proceedings of the 1st Balkan botanical congress. Kluwer Academic Publishers, The NetherlandsVagera J, Havranek P (1985) In vitro induction of androgenesis in Capsicum annuum L. and its genetic aspests. Biol Plant 27(1):10–21Zur I, Dubas E, Golemiec E, Szechynska-Hebda M, Golebiowska G, Wedzony M (2009) Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Rep 28:1279–128

    Environmental risk assessments for transgenic crops producing output trait enzymes

    Get PDF
    The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the agronomic performance and nutritional quality of the crop made during product development, and information from the scientific literature on the mode-of-action, taxonomic distribution and environmental fate of the enzyme. Few, if any, specific ecotoxicology or environmental fate studies are needed. The effective use of existing data means that regulatory decision-making, to which an environmental risk assessment provides essential information, is not unnecessarily complicated by evaluation of large amounts of new data that provide negligible improvement in the characterization of risk, and that may delay environmental benefits offered by transgenic crops containing output trait enzymes

    Acceptability to patients, carers and clinicians of an mHealth platform for the management of Parkinson's disease (PD_Manager): study protocol for a pilot randomised controlled trial.

    Get PDF
    BACKGROUND: Parkinson's disease is a degenerative neurological condition causing multiple motor and non-motor symptoms that have a serious adverse effect on quality of life. Management is problematic due to the variable and fluctuating nature of symptoms, often hourly and daily. The PD_Manager mHealth platform aims to provide a continuous feed of data on symptoms to improve clinical understanding of the status of any individual patient and inform care planning. The objectives of this trial are to (1) assess patient (and family carer) perspectives of PD_Manager regarding comfort, acceptability and ease of use; (2) assess clinician views about the utility of the data generated by PD_Manager for clinical decision making and the acceptability of the system in clinical practice. METHODS/DESIGN: This trial is an unblinded, parallel, two-group, randomised controlled pilot study. A total of 200 persons with Parkinson's disease (Hoehn and Yahr stage 3, experiencing motor fluctuations at least 2 h per day), with primary family carers, in three countries (110 Rome, 50 Venice, Italy; 20 each in Ioannina, Greece and Surrey, England) will be recruited. Following informed consent, baseline information will be gathered, including the following: age, gender, education, attitudes to technology (patient and carer); time since Parkinson's diagnosis, symptom status and comorbidities (patient only). Randomisation will assign participants (1:1 in each country), to PD_Manager vs control, stratifying by age (1 ≤ 70 : 1 > 70) and gender (60% M: 40% F). The PD_Manager system captures continuous data on motor symptoms, sleep, activity, speech quality and emotional state using wearable devices (wristband, insoles) and a smartphone (with apps) for storing and transmitting the information. Control group participants will be asked to keep a symptom diary covering the same elements as PD_Manager records. After a minimum of two weeks, each participant will attend a consultation with a specialist doctor for review of the data gathered (by either means), and changes to management will be initiated as indicated. Patients, carers and clinicians will be asked for feedback on the acceptability and utility of the data collection methods. The PD_Manager intervention, compared to a symptom diary, will be evaluated in a cost-consequences framework. DISCUSSION: Information gathered will inform further development of the PD_Manager system and a larger effectiveness trial. TRIAL REGISTRATION: ISRCTN Registry, ISRCTN17396879 . Registered on 15 March 2017

    Five Decision Support Applications

    No full text

    Evaluation of Life-Event Portals: Multi-attribute Model and Case Study

    No full text
    corecore