679 research outputs found
Mouse Phenome Database
The Mouse Phenome Database (MPD; http://www.jax.org/phenome) is an open source, web-based repository of phenotypic and genotypic data on commonly used and genetically diverse inbred strains of mice and their derivatives. MPD is also a facility for query, analysis and in silico hypothesis testing. Currently MPD contains about 1400 phenotypic measurements contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders and neurosensory disorders. Electronic access to centralized strain data enables investigators to select optimal strains for many systems-based research applications, including physiological studies, drug and toxicology testing, modeling disease processes and complex trait analysis. The ability to select strains for specific research applications by accessing existing phenotype data can bypass the need to (re)characterize strains, precluding major investments of time and resources. This functionality, in turn, accelerates research and leverages existing community resources. Since our last NAR reporting in 2007, MPD has added more community-contributed data covering more phenotypic domains and implemented several new tools and features, including a new interactive Tool Demo available through the MPD homepage (quick link: http://phenome.jax.org/phenome/trytools)
Concept for a distributed processor computer
Future generation computer utilizes cell of single metal oxide semiconductor wafer containing general purpose processor section and small memory of approximately 512 words of 16 bits each. Cells are organized into groups and groups interconnected to form computer
Mouse Phenome Database (MPD)
The Mouse Phenome Project was launched a decade ago to complement mouse genome sequencing efforts by promoting new phenotyping initiatives under standardized conditions and collecting the data in a central public database, the Mouse Phenome Database (MPD; http://phenome.jax.org). MPD houses a wealth of strain characteristics data to facilitate the use of the laboratory mouse in translational research for human health and disease, helping alleviate problems involving experimentation in humans that cannot be done practically or ethically. Data sets are voluntarily contributed by researchers from a variety of institutions and settings, or in some cases, retrieved by MPD staff from public sources. MPD maintains a growing collection of standardized reference data that assists investigators in selecting mouse strains for research applications; houses treatment/control data for drug studies and other interventions; offers a standardized platform for discovering genotype–phenotype relationships; and provides tools for hypothesis testing. MPD improvements and updates since our last NAR report are presented, including the addition of new tools and features to facilitate navigation and data mining as well as the acquisition of new data (phenotypic, genotypic and gene expression)
Asymmetric polarity reversals, bimodal field distribution, and coherence resonance in a spherically symmetric mean-field dynamo model
Using a mean-field dynamo model with a spherically symmetric helical
turbulence parameter alpha which is dynamically quenched and disturbed by
additional noise, the basic features of geomagnetic polarity reversals are
shown to be generic consequences of the dynamo action in the vicinity of
exceptional points of the spectrum. This simple paradigmatic model yields long
periods of constant polarity which are interrupted by self-accelerating field
decays leading to asymmetric polarity reversals. It shows the recently
discovered bimodal field distribution, and it gives a natural explanation of
the correlation between polarity persistence time and field strength. In
addition, we find typical features of coherence resonance in the dependence of
the persistence time on the noise.Comment: 5 pages, 7 figure
TOGA COARE mooring deployment, mooring check-out and mooring recovery cruises : R/V Wecoma 7 October-1 November 1992, R/V Le Noriot 2 December-15 December 1992, R/V Wecoma 27 February-11 March 1993
The Tropical Ocean - Global Atmosphere Coupled Ocean - Atmosphere Response Experiment (TOGA COARE) was
conceived in order to improve understanding of the principal processes responsible for coupling of the ocean and atmosphere in the
western Pacific warm pool region. Field work for TOGA COARE was concentrated in an Intensive Flux Array (IFA) and included a
variety of atmospheric and oceanic platforms. The Upper Ocean Processes Group (UOPG) was involved in TOGA COARE through
the preparation, deployment, and recovery of a heavily instrumented surface mooring for the observation of air-sea fluxes and
oceanic temperature, salinity, and currents in the upper 300 m. The mooring was deployed at 1°,45.27'S, 155°,59.73'E on 21
October 1992 in 1744 m of water. An instrument check-out cruise was undertaken in December of 1992 in order to evaluate the
meteorological systems on the buoy. The mooring was recovered on 4 March 1993. This report describes mooring deployment
operations, the instrument check-out cruise, and the mooring recovery. UOPG personnel also assisted with the deployment and
recovery of five other moorings as a part of the COARE IFA and these operations are discussed.Funding provided by the National Science Foundation under grants OCE-9110554 and OCE-9110559
Self-consistent modelling of the Milky Way structure using live potentials
To advance our understanding of the evolution of the interstellar medium (ISM) of our Galaxy, numerical models of Milky Way (MW) type galaxies are widely used. However, most models only vaguely resemble the MW (e.g. in total mass), and often use imposed analytic potentials (which cannot evolve dynamically). This poses a problem in asserting their applicability for the interpretation of observations of our own Galaxy. The goal of this work is to identify a numerical model that is not only an MW-type galaxy, but one that can mimic some of the main observed structures of our Galaxy, using dynamically evolving potentials, so that it can be used as a base model to study the ISM cycle in a galaxy like our own. This paper introduces a suite of 15 MW-type galaxy models developed using the AREPO numerical code, that are compared to Galactic observations of 12CO and H I emission via longitude–velocity plots, from where we extract and compare the skeletons of major galactic features and the terminal gas velocities. We found that our best-fitting model to the overall structure, also reproduces some of the more specific observed features of the MW, including a bar with a pattern speed of 30.0 ± 0.2 km s−1 kpc−1, and a bar half-length of 3.2 ± 0.8 kpc. Our model shows large streaming motions around spiral arms, and strong radial motions well beyond the inner bar. This model highlights the complex motions of a dynamic MW-type galaxy and has the potential to offer valuable insight into how our Galaxy regulates the ISM and star formation
Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data
We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars
Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects.
To see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3-month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug-free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, β-guanidinopropionic acid, MitoQ, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), but none of these led to a change in survival in either sex
Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects.
To see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3-month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug-free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, β-guanidinopropionic acid, MitoQ, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), but none of these led to a change in survival in either sex
- …